Coral Reefs

, Volume 10, Issue 2, pp 115–125 | Cite as

The demise of the rudist-bearing carbonate platforms at the Cenomanian/Turonian boundary: a global control

  • J. M. Philip
  • C. Airaud-Crumiere
Article

Abstract

The demise of the rudist-bearing carbonate blatforms at the Cenomanian/Turonian boundary is tudied in different ways through examples from the Vestern Mediterranean Province. During the Late Cenonanian, North and South Tethyan carbonate platforms xtened widely and were subjected to different climatic and oceanographic conditions. The onset of the demise of the carbonate platforms occurred during Upper Arphaeocretacea and Helvetica biozone times and was boeval with the Global Oceanic Anoxic Event (OAE2). A major biologic turnover affected the benthic organisms i.e. rudists and large foraminifera. The rudists underwent a severe extinction event, leading to the disappearance of the dominantly aragonite secreting rudists, while the dominantly calcitic forms were less affected. The major development of the carbonate platforms occurred during the Latest Cenomanian — Earliest Turonian, involving a transgressive highstand system tract and a keep-up carbonate organization. During the Early Turonian the carbonate sedimentation was disturbed; hard-grounds, condensed beds, terrigenous inputs developed and a gap in the carbonate platform deposition occurred. A combination of several sequentially linked factors, could explain the demise of the carbonate platform and the major change on the benthic ecosystem at the Cenomanian-Turonian boundary.

Keywords

Foraminifera Cenomanian Carbonate Platform Turonian Biozone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdallah H (1989) Les transgressions du Crétacé moyen entre les jeux tectoniques et les montées eustatiques (Sud Tunisien). In: Cotillon P (ed) Les événements de la partie moyenne du Crétacé (Aptien à Turonien), vol 11. Géobios, Lyon, pp 83–94Google Scholar
  2. Arthur MA, Schlanger SO, Jenkins HC (1987) The cenomanian-Turonian oceanic anoxic event, II. Palaeoceanographic controls on organic matter production and preservation. In: Brooks J, Fleet A (eds) Marine petroleum source rocks. Spec Pub Geol Soc 26:401–420Google Scholar
  3. Arthur MA, Dean WE, Pratt LM (1988) Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian/Turoniam boundary. Nature 335:714–717Google Scholar
  4. Barron EJ, Washington WM (1982) Cretaceous climate: a comparison of atmospheric simulations with the geologic record. Palaeogeogr Palaeoclimatol Palaeoecol 40:103–133Google Scholar
  5. Berthou PY (1984) Albian-Turonian stage boundaries and subdivisions in the Western Portuguese Basin, with special emphasis on the Cenomanian-Turonian boundary in the ammonite facies and rudist facies. Bull Geol Soc Denmark 33:41–55Google Scholar
  6. Bilotte M (1978) Proposition pour une biozonation des séries épicontinentales du Cénomanien des Pyrénées. Geol Méditerranéenne 1:39–46Google Scholar
  7. Borgomano J (1987) La plate-forme et le talus carbonatés du Crétacé supérieur du Gargano et des Murges (italie Méridionale). Stratigraphie, Sédimentologie, Diagenèse, Fonctionnement tectono sédimentaire. Thèse Univ Marseille 625 pGoogle Scholar
  8. Brass GW, Southam JR, Peterson WH (1982) Warm saline bottom water in the ancient ocean. Nature 296:620–623Google Scholar
  9. Brumsack HJ, Thurow J (1986) The geochemical facies of black shales from the Cenomanian/Turonian boundary event (CTBE). In: Degens ET, Meyers PA, Brassel SC (eds) Biogeochemistry of black shales. Mitt Geol Paläontol Inst Hamburg 60:247–265Google Scholar
  10. Busson G (1972) Principes, méthodes et résultats d'une étude stratigraphique du Mésozoíque saharien, Mém Mus Hist Nat Paris 26:441Google Scholar
  11. Busson G (1984) La sédimentation épicontinentale des bassins salins accomplis et des bassins evaporitiques avortés: effet sur la sédimentation océanique contemporaine et contigüe dans le cas du Crétacé saharien et nord atlantique. CR Acad Sci Paris 299,II, 5:213–216Google Scholar
  12. Carter JG (1980) Environmental and biological controls of bivalve shell mineralogy and microstructure p. In: Rhoads DC, Lutz RA (eds) Skeletal growth of aquatic organisms. Plenum, New YorkGoogle Scholar
  13. D'Argenio B, Horvath F, Channell JET (1980) Palaeotectonic evolution of Adria, the African promontory. Mém BRGM 115. Colloque 5, 26è CGI: 331–351Google Scholar
  14. De Castro P (1980) Le alveoline aptiano-cenomaniane del Mediterranea centrale e orientale: sintesi problemi. In: Avvenimenti del Cretacico medio (Napoli, 2–29 febbraio 1980). Università degli Studi di Napoli, Instituto di Paleontologia, 3–86Google Scholar
  15. Elder WP (1987) The paleoecology of the Cenomanian-Turonian (Cretaceous) stage boundary extinctions at Black Mesa, Arizona Palaios 2:24–40Google Scholar
  16. Ferrandini M, Philip J, Babinot JF, Ferrandini J, Tronchetti G (1985) La plate-forme carbonatée du Cénomano-Turonien de la région d'Erfound-Errachidia (Sud-Est Marocain): stratigraphie et paléoenvironnents. Bull Soc Géol Fr (8) I 4:559–564Google Scholar
  17. Floquet M, Philip J, Babinot JF, Tronchetti G, Bilotte M (1987) Transgressions-régression marines et événements biosédimentaires sur les marges pyrénéo-provençales et nord ibériques au Crétacé supérieur. Mém Géol Univ Dijon Fr Mém 11:245–258Google Scholar
  18. Gimenez R (1989) La mégaséquence transgressive-régressive du Cénomanien supérieur dans la région méridionale de la Chaîne Ibérique (provinces de Valence et d'Albacete, Espagne). In: Cotillon P (ed) Les événements de la partie moyenne du Crétacé (Aptien à Turonien), vol 11. Géobios, Lyon, pp 59–67Google Scholar
  19. Graciansky (de) PC, Brosse E, Derro G, Herbin JP, Montadert L, Müller C, Sigal J, Schaaf A (1987) Organic-rich sediments and palaeoenvironmental reconstructions, of the Cretaceous North Atlantic. In: Brooks J, Fleet A (eds) Marine petroleum source rocks. Spec Publ Geol Soc 26:317–344Google Scholar
  20. Hallock P, Schlager W (1986) Nutrient excess and the demise of coral reefs and carbonate platforms. Palaios 1:389–398Google Scholar
  21. Haq BU, Hardenbol J, Vail PR (1987) Chronology of fluctuating sea levels since the Triassic. Science 235:1156–1166Google Scholar
  22. Hilbrecht H, Arthur MA, Schlanger SO (1986) The Cenomanian-Turonian boundary event: sedimentary, faunal and geochemical criteria developed from stratigraphic studies in NW-Germany. In: Walliser O (ed) Global bio-events. (Lecture Notes in Earth Science, vol 8, pp 345–370)Google Scholar
  23. Jarvis I, Carson GA, Cooper MKE, Hart MB, Leary PN, Tocher BA, Horne D, Rosenfeld A (1988a) Microfossil assemblages and the Cenomanian-Turonian (late Cretaceous) oceanic anoxic event. Cretaceous Res 9:3–103Google Scholar
  24. Jarvis I, Carson G, Hart M, Leary PN, Tocher B (1988b) The Cenomanian_Turonian (late Cretaceous) anoxic event in SW England: evidence from Hooken Cliffs near Beer, SE Devon. Newsl Stratigr 18, 3:147–164Google Scholar
  25. Kauffman EG (1984) The fabric of Cretaceous marine extinctions. In: Berggren WA, Van Couvering J (eds) Catastrophes and earth history. The new uniformitarianism. Princeton University Press, pp 151–246Google Scholar
  26. Kauffman EG (1986) High resolution event stratigraphy: regional and global Cretaceous bio-events. In: Walliser O (ed) Global bio-events. (Lecture notes in earth sciences, vol 8, pp 279–335)Google Scholar
  27. Kemper E (1987) Das Klima der Kreide-Zeit. Geol Jahrb A 96:5–187Google Scholar
  28. Kennedy WJ (1984) Ammonite faunas and the “standard zones” of the Cenomanian to Maastrichtian Stages in their type areas, with some proposals for the definition of the stage boundaries by ammonites, Bull Geol Soc Denmark 33:147–161Google Scholar
  29. Kuhn O (1932) Rudistae. Fossilium catalogus I. Animalia Editus a W Quenstedt Pars 54, Berlin, 200 pGoogle Scholar
  30. Kuhnt W, Thurow J, Wiedmann J, Herbin JP (1986) Oceanic anoxic conditions around the Cenomanian/Turonian boundary and the response of the biota. In: Degens ET, Meyers PA, Brassel SC (eds) Biogeochemistry of black shales. Mitt Geol Paläontol Inst Hamburg 60:205–246Google Scholar
  31. Kutassy A (1934) Pachyodonta mesozoica. Fossilium catalogus I: Animalia. Editus a W Quenstedt Pars 68, Berlin, 202 pGoogle Scholar
  32. Lloyd CR (1982) The Mid-Cretaceous earth: paleogeography, ocean circulation and temperature; atmospheric circulation. J Geol 90:393–413Google Scholar
  33. Macellari CE, Vries TJ de (1987) Late Cretaceous upwelling and anoxic sedimentation in Northwestern South America. Palaeogeogr Palaeoclimatol Palaeoecol 59:279–292Google Scholar
  34. McKinney ML, Oyen CW (1989) Causation and nonrandomness in biological and geological time series: temperature as a proximal control of extinction and diversity. Palaios 4:3–15Google Scholar
  35. Masse JP, Phillip J (1986) L'evolution des Rudistes au regard des principaux événements géologiques du Crétacé. Bull Centres Rech Explor-Prod Elf-Aquitaine, 10, 2:437–456Google Scholar
  36. Parrish JT, Ziegler AM, Scotese CR (1982) Rainfall patterns and the distribution of coals and evaporite in the Mesozoic and Cenozoic. Palaeogeogr Palaeoclimatol Palaeoecol 40:67–101Google Scholar
  37. Philip J (1978) Stratigraphie et paléoécologie des formations à rudistes du Cénomanien: l'exemple de la Provence. In: Coll Cénom Français (Paris, 1976). Rev Geol Medit 5, 1:155–168Google Scholar
  38. Philip J (1982) Paléobiogéographie des rudistes et géodynamiques des marges mésogéennes au Crétacé supérieur. Bull Soc Géol Fr (7), XXXIV 5–6:995–1006Google Scholar
  39. Philip J, Airaud C, Tronchetti G (1989a) Evénements paléogéographiques en Provence (SE France) au passage Cénomanien-Turonien. Modifications biosédimentaires. Causes géodynamiques. In: Cotillon P (ed), Les événements de la partie moyenne du Crétacé (Aptien à Turnien), vol 11. Geobios, Lyon, pp 107–117Google Scholar
  40. Philip J, Mermighis A, Tronchetti G (1989b) Nouvelles données stratigraphiques et paléogéographiques sur le Crétacé supérieur du domaine hellénique interne. Le massif de l'Akros (Argolide, Grèce). CR Acad Sci Paris sér II:1379–1384Google Scholar
  41. Polsak A, Bauer V, Sliskovic T (1982) Stratigraphie du Crétacé supérieur de la plate-forme carbonatée dans les Dinarides externes. Cretaceous Res 3:125–133Google Scholar
  42. Pratt LM (1985) Isotopic studies of organic matter and carbonate in rocks of the Greenhorn marine cycle in Fine-Grained deposits and biofacies of the Cretaceous Western Interior Seaway: evidence of cyclic sedimentary processes. Partt LM, Kauffman EG, Zelt FB (eds) Soc Econ Pal Mineral, Field Trip Guide Book 4:38–48Google Scholar
  43. Reyment RA (1980) Biogeography of the Saharan Cretaceous and Paleocene Epicontinental transgressions. Cretaceous Res 1, 4:299–328Google Scholar
  44. Sarg JF (1988) Carbonate sequence stratigraphy. SEPM Spec Publ 42:155–182Google Scholar
  45. Sanchez V. (1981) Hippuritidae y Radiolitidae. Catalogo de especies. Publ Geol Univ Auton Barcelona 15:228 pGoogle Scholar
  46. Schlager W (1981) The paradox of drowned reefs and carbonate platforms. Geol Soc Am Bull 92:197–211Google Scholar
  47. Schlanger SO, Arthur MA, Jenkyns HC, Scholle PA (1987) The Cenomanian-Turonian oceanic anoxic event. I. Stratigraphy and distribution of organic carbon-rich beds and the marine13 C excursion. In: Brooks J, Fleet A (eds) Marine petroleum source rocks. Spec Publ Geol Soc 26:371–399Google Scholar
  48. Schroeder R, Neumann M (eds) (1985) Les Grands Foraminifères du Crétacé moyen de la région méditerranéenne. Géobios, Lyon, 7:160pGoogle Scholar
  49. Scott R.W. (1988) Evolution of Late Jurassic and Early Cretaceous reef biotas. Palaios 3:184–193Google Scholar
  50. Thurow J, Kuhnt W, Wiedmann J (1982) Zeitlicher und paläogeographischer Rahmen der Phthanit und Black Shale-Sedimentation in Marokko. NJb Geol Paläontol Abh 165:147–176Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • J. M. Philip
    • 1
  • C. Airaud-Crumiere
    • 1
  1. 1.Centre de Sédimentologie-PaléontologieUniversité de Provence, C.N.R.S. — U.R.A. 1208Marseille Cedex 03France

Personalised recommendations