Advertisement

Histochemie

, Volume 11, Issue 2, pp 171–179 | Cite as

Formazan-Stabilität und -Reoxydation in Gewebsstrukturen unter dem Einfluß elektronenmikroskopischer Präparationstechnik

  • F. Wohlrab
  • U. Fuchs
Article

Summary

The stability of NBT and TNBT towards embedding media used in electron microscopy (Methacrylat, Vestopal W, Araldit, Epon) and their ability to be re-oxidized was tested on formazan-containing tissue sections and trial stripes. The formazans of the monotetrazoles INT, MTT and TTC were included for comparative reasons. After having been exposed to osmium vapour or 2% OsO4-solution over a period of 4 weeks formazan-containing trial stripes showed no changes whatsoever; the formazans of TTC, MTT, and INT were quantitatively soluble in ether after OsO4 treatment, whereas the di-formazans of NBT and TNBT which are known to be stable to organic solvents, could not be extracted. The ether soluble formazans of TTC and MTT could be re-oxidized by OsO4. INT-, MTTCo-, and NBT-formazan containing kidney sections showed no sign of re-oxidation after 1 hour fixation in 1% OsO4-solution and storage for four years. It is therefore concluded that formazan which is bound to tissue lipoproteins is difficult to re-oxidize with OsO4 in concentrations normally used in electron microscopy. Benzoyl peroxyd, which acts as an catalyser when methacrylat is used as embedding material, re-oxidized all formazans of the tetrazoles under test within a very short period of time. The components Activateur and Initiateur of the Vestopal W embedding substance also induced a (delayed) formazan re-oxidation; the formazans of NBT and TNBT showed no reaction to the components of Araldit and Epon embedding material, MNA excluded.

The fixation of the tissues with various aldehydes (glutaraldehyde, hydroxyaldipaldehyde, crotonaldehyde, formaldehyde) followed by incubation in a TNBT-solution caused a temperature dependent reduction of the TNBT to brown di-formazan which may have some influence in the interpretation of enzyme-histochemical investigations.

Zusammenfassung

Es wurden NBT und TNBT hinsichtlich ihrer Stabilität gegenüber elektronenmikroskopischen Einbettungsmitteln (Methacrylat, Vestopal W, Araldit, Epon) sowie ihrer Reoxydationsfähigkeit (OsO4, Benzoylperoxyd) an formazanhaltigen Gewebsschnitten und Teststreifen untersucht. Vergleichsweise kamen auch die Formazane der Monotetrazole INT, MTT sowie TTC zur Testung. — Formazanhaltige Teststreifen lassen nach 4wöchiger Einwirkung von Osmium-Dämpfen oder 2% iger OsO4-Lösung keine Veränderungen erkennen; die Formazane vom TTC, MTT und INT lösen sich auch nach OsO4-Behandlung quantitativ in Äther, während die in organischen Lösungsmitteln beständigen Diformazane vom NBT und TNBT sich nicht extrahieren lassen. Die in Äther gelösten Formazane vom TTC und MTT werden in kurzer Zeit durch OsO4 reoxydiert. INT-, MTTCo- und NBT-formazanhaltige Nierenschnitte lassen nach Istündiger Fixierung in l% iger OsO4-Lösung nach 4jähriger Aufbewahrung keine Reoxydationserseheinungen erkennen. Es wird daraus der Schluß gezogen, daß an Lipoproteinstrukturen des Gewebes gebundenes Formazan einer Reoxydation durch OsO4 in den zur elektronenmikroskopischen Präparation verwendeten Konzentrationen schwer zugänglich ist. — Sämtliche Formazane der getesteten Tetrazole werden durch den bei der Methacrylat-Einbettung verwendeten Katalysator Benzoylperoxyd schon nach kurzer Einwirkungszeit vollständig zum Tetrazol reoxydiert. Durch die Komponenten Activateur und Initiateur der Vestopal-W-Einbettung erfolgt ebenfalls eine — wenn auch verzögerte — Formazan-Reoxydation, während die Formazane vom NBT und TNBT gegenüber den Komponenten der Araldit- und Epon-Einbettung (mit Ausnahme von MNA) keine Veränderungen erkennen lassen.

Eine Vorfixierung von Gewebsproben in verschiedenen Aldehyden (Glutaraldehyd, Hydroxyadipaldehyd, Crotonaldehyd, Formaldehyd) und anschließende Inkubation in einer TNBT-Lösung bewirkt eine temperaturabhängige Reduktion des TNBT zum braunen Diformazan und dürfte daher von Einfluß auf die Interpretation enzymhistochemischer Untersuchungen sein.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Bahr, G. F.: Osmium tetroxide and ruthenium tetroxide and their reactions with biologically important substances. Exp. Cell Res.7, 457–479 (1954).Google Scholar
  2. Criegee, R., B. Marchand u.H. Wannowius: Zur Kenntnis der organischen OsmiumVerbindungen. II. Mitteilung. Ann. Chem.550, 99–133 (1942).Google Scholar
  3. Deguchi, Y.: A histochemical method for demonstrating protein-bound sulfhydryl and disulfide groups with nitro blue tetrazolium. J. Histochem. Cytochem.12, 261–265 (1964).Google Scholar
  4. Fahimi, H. D., andM. J. Karnovsky: Cytochemical localization of two gylcolytic dehydrogenase in white skeletal muscle. J. Cell Biol.29, 113–128 (1966).Google Scholar
  5. Hanker, J., L. Katzoff, H. Ueno, R. M. Britton, H. L. Wasserkrug, Y. Morizono, andA. M. Seligman: Experiments in electron microscopy of dehydrogenase with a new osmiophilic tetrazolium salt; thiocarbamyl nitro-BT (TC-NBT). J. Histochem. Cytochem.14, 794–795 (1966).Google Scholar
  6. —,A. R. Seaman, L. P. Weiss, H. Ueno, R. A. Bergman, andA. M. Seligman: Osmiophilic reagents: new cytochemical principle for light and electron microscopy. Science146, 1039–1043 (1964).Google Scholar
  7. Jerchel, D.: Briefliche Mitteilung 1967.Google Scholar
  8. Meier-Ruge, W.: Vergleichende Untersuchungen über die histotopochemischen Qualitäten der Tetrazoliumsalze MTT, Nitro-BT und TNBT in der Enzymhistochemie. Histochemie4, 438–445 (1965).Google Scholar
  9. Ogawa, K.: Specifity involved in the dehydrogenase reaction using tetrazolium salts as an electron acceptor. Kumamoto med. J.41, 29–38 (1967).Google Scholar
  10. —, andR. J. Barrnett: Electron histochemical examination of oxidative enzymes and mitochondria. Nature (Lond.)203, 724–726 (1964).Google Scholar
  11. ——: Electron cytochemical studies of succinic dehydrogenase and dihydronicotinamideadenine dinucleotide diaphorase activities. J. Ultrastruct. Res.12, 488–508 (1965).Google Scholar
  12. —, andY. Saito: Problems in the electron histochemistry of dihydronicotinamide-adenine dinucleotide (NADH2) diaphorase using tetrazolium salts as hydrogen acceptors. J. Electronmicr.12, 68–71 (1963).Google Scholar
  13. Pearse, A. G. E.: Some aspects of the localization of enzyme activity with the electron microscope. J. roy. micr. Soc.81, 107–117 (1963).Google Scholar
  14. —, andR. Hess: Substantivity an other factors responsible for formazan patterns in dehydrogenase histochemistry. Experientia (Basel)17, 136–141 (1961).Google Scholar
  15. Rosa, C. G.: Tetranitro-blue tetrazolium and its use in light and electron histochemical demonstrations of succinic dehydrogenase. Second Int. Congr. Histochem. Cytochem. Frankfurt/Main, p. 167. Berlin-Göttingen-Heidelberg: Springer 1964.Google Scholar
  16. —, andK. C. Tsou: Use of tetrazolium compounds in oxidative enzyme histoand cytochemistry. Nature (Lond.)192, 990–991 (1961).Google Scholar
  17. ——: Demonstration of globular substructures in mitochondrial membranes as a result of SDH-activity. J. Histochem. Cytochem.13, 710 (1965).Google Scholar
  18. Sabatini, D. D., K. Bensch, andR. J. Barrnett: Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyd fixation. J. Cell Biol.17, 19–58 (1963).Google Scholar
  19. Sedar, A. W., andC. G. Rosa: Cytochemical demonstration of the succinic dehydrogenase system with the electron microscope using nitro-blue tetrazolium. J. Ultrastruct. Res.5, 226–243 (1961).Google Scholar
  20. ——, andK. C. Tsou: Tetranitro-blue tetrazolium and the electron histochemistry of succinic dehydrogenase. J. Histochem. Cytochem.10, 506–508 (1962).Google Scholar
  21. Seligman, A. M.: Some recent trends and advances in enzyme histochemistry. Sec. Int. Congr. Histochem. Cytochem. Frankfurt/Main 1964, p. 9–21. Berlin-Göttingen-Heidelberg: Springer 1964.Google Scholar
  22. —,H. Ueno, Y. Morizono, H. L. Wasserkrug, L. Katzoff, andJ. S. Hanker: Electron microscopic demonstration of dehydrogenase activity with a new osmiophilic ditetrazolium salt (TC-NBT). J. Histochem. Cytochem.15, 1–13 (1967).Google Scholar
  23. Tranzer, J. P., andA. G. E. Pearse: The electron cytochemistry of ubiquinone in mammalian heart, demonstrated with a monotetrazolium salt. Histochemie4, 502–506 (1965).Google Scholar
  24. Vanderwinkel, E., etR. G. E. Murray: Organelles intracytoplasmiques bacteriens et site d'activity oxydoreductrice. J. Ultrastruct. Res.7, 185–199 (1962).Google Scholar
  25. Wohlrab, F., u.L. Cossel: Zur Problematik des elektronenmikroskopischen Nachweises von Dehydrogenasen in der Zelle. Z. mikr.-anat. Forsch.71, 457–477 (1964).Google Scholar
  26. —, u.U. Fuchs: Nichtenzymatische TNBT-Färbung von Gewebsstrukturen. Licht- und elektronenmikroskopische Untersuchungen. Histochemie9, 256–268 (1967).Google Scholar
  27. Yaeger, J. A.: Microscopic and submicroscopic localization of succinic dehydrogenase activity in the muscle cells of mouse diaphragm. Exp. Cell Res.22, 493–502 (1961).Google Scholar

Copyright information

© Springer-Verlag 1967

Authors and Affiliations

  • F. Wohlrab
    • 1
  • U. Fuchs
    • 1
  1. 1.Pathologisches Institut der Karl-Marx-Universität LeipzigGermany

Personalised recommendations