, Volume 56, Issue 1, pp 27–36 | Cite as

On the interaction of drugs with the cholinergic nervous system

I. Tolerance to phencyclidine derivatives in mice: Pharmacological characterization
  • Irit Pinchasi
  • Saul Maayani
  • Mordechai Sokolovsky


Phencyclidine[1(1-phenylcylohexyl) piperidine] and cyclohexamine [1(1-phenylcyclohexyl) ethylamine) were used as model psychotropic drugs to study the phenomenon of tolerance in mice. The behavioral effects of these drugs were measured by forced motor activity using the rotarod test.

Tolerance develops progressively with chronic treatment at a rate and to a degree that are dose-dependent. The optimal conditions for tolerance induction are s.c. administration with 4-h intervals. The process of tolerance development is expressed in concomitant changes in five indices chosen for its quantification: ED50 values, duration, duration-dose dependency, critical falling time, and body weight. All these changes were found to be totally reversible, with no carry-over between two consecutive tolerance cycles. It was established that cyclohexamine is a better tolerance-inducer than phencylidine, although the nature of the tolerance developed for both drugs is qualitatively similar.

The significance of these results with respect to putative biochemical tolerance mechanisms is presented and discussed.

Key words

Phencyclidine Cyclohexamine Tolerance Forced motor activity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aston, R.: Acute tolerance indices to pentobarbital in male and female mice. J. Pharmacol. Exp. Ther.152, 350–353 (1966)Google Scholar
  2. Balster, R. L., Chait, L. D.: The behavioral pharmacology of phencyclidine. Clin. Toxicol.9, 513–528 (1976)Google Scholar
  3. Chen, G., Ensor, C. R., Russel, D., Bohner, B.: The pharmacology of 1-(1-phenylcyclohexyl) piperidine HCl. J. Pharmacol. Exp. Ther.127, 241–250 (1959)Google Scholar
  4. Cheney, D. L., Goldstein, A.: Tolerance to opioid narcotics: time course and reversibility of physical dependence in mice. Nature232, 477–478 (1971)Google Scholar
  5. Cheney, D. L., Goldstein, A., Sheehan, P.: Rate of development and reversibility of brain tolerance and physical dependence in mice treated with opiates [Abstr.]. Fed. Proc.29, 685 (1970)Google Scholar
  6. Cochin, J., Kornetsky, C.: Development and loss of tolerance to morphine in the rat after single and multiple injections. J. Pharmacol. Exp. Ther.145, 1–10 (1964)Google Scholar
  7. Cochin, J., Mushlin, B. E.: The role of dose interval in the development of tolerance to morphine [Abstr.]. Fed. Proc.29, 685 (1970)Google Scholar
  8. Cox, B. M., Ginsburg, M., Willis, J.: The offset of morphine tolerance in rats and mice. Br. J. Pharmacol.53, 383–391 (1975)Google Scholar
  9. Davies, B. M.: A preliminary report on the use of sernyl in psychiatric illness. J. Ment. Sci.106, 1073–1079 (1960)Google Scholar
  10. Davies, B. M., Beech, H. R.: The effect of 1-arylcyclohexylamine (sernyl) on twelve normal volunteers. J. Ment. Sci.106, 912–924 (1960)Google Scholar
  11. Domino, E. F.: Neurobiology of phencyclidine (sernyl), a drug with an unusual spectrum of pharmacological activity. In: Int. Rev. Neurobiology, vol. 6, C. C. Pfeiffer and J. R. Smythies, eds., pp. 303–347. New York: Academic Press 1964Google Scholar
  12. Domino, E. F., Wilson, A. E.: Psychotropic drug influences on brain acetylcholine utilization. Psychopharmacologia (Berl.)25, 291–298 (1972)Google Scholar
  13. Douglas, B. G., Dagirmanjian, R.: The effects of magnesium deficiency on ketamine sleeping times in the rat. Br. J. Aneasth.47, 336–340 (1975)Google Scholar
  14. Ebert, A. G., Yim, G. K. W., Miya, T. S.: Distribution and metabolism of barbital-14C in tolerant and nontolerant rats. Biochem. Pharmacol.13, 1267–1274 (1964)Google Scholar
  15. Freedman, D. X., Aghajanian, G. K., Ornitz, E. M., Rosner, B. S.: Patterns of tolerance to LSD and mescaline. Science127, 1173–1174 (1958)Google Scholar
  16. Goldstein, A., Sheehan, P.: Tolerance to opioid narcotics. I. Tolerance to the “running fit” caused by levorphanol in the mouse. J. Pharmacol. Exp. Ther.169, 175–184 (1969)Google Scholar
  17. György, L., Gellén, B., Pheifer, A. K., Dóda, M., Bité, A.: Oxotremorine: acute tolerance to it and its central “cholinolytic” effect in mice. J. Pharm. Pharmacol.22, 385–386 (1970)Google Scholar
  18. Hubbard, J. F., Goldbaum, L. R.: The mechanism of tolerance to thiopental in mice. J. Pharmacol. Exp. Ther.97, 488–491 (1949)Google Scholar
  19. Hug, C. C.: Characteristics and theories related to acute and chronic tolerance development. In: Chemical and biological aspects of drug dependence. S. J. Mulé and H. Brill, eds., pp. 307–358. Cleveland: CRS Press 1972Google Scholar
  20. Isbell, H., Wolbach, A. B., Wilker, A., Miner, E. J.: Cross-tolerance between LSD and psilocybin. Psychopharmacologia (Berl.)2, 147–159 (1961)Google Scholar
  21. Kalant, H., LeBlanc, A. E., Gibbins, R. J.: Tolerance to and dependence on some non-opiate psychotropic drugs. Pharmacol. Rev.23, 135–191 (1971)Google Scholar
  22. Kalir, A., Edery, H., Pelah, Z., Balderman, D., Porath, G.: 1-Phenylcycloalkylamine derivatives. II. Synthesis and pharmacological activity. J. Med. Chem.12, 473–477 (1969)Google Scholar
  23. Kinnard, W., Carr, C. J.: A preliminary procedure for the evaluation of central nervous system depressants. J. Pharmacol. Exp. Ther.21, 354–361 (1957)Google Scholar
  24. Lewander, T.: Effect of chronic treatment with central stimulants on brain monoamines and some behavioral and physiological functions in rats, guinea pigs and rabbits. Adv. Biochem. Psychopharmacol.12, 221–239 (1974)Google Scholar
  25. Lindgren, J. E., Hammer, C. G., Hessling, R., Holmstedt, B.: The chemical identity of “Hog” — a new hallucinogen. Am. J. Pharmacol.141, 86–90 (1969)Google Scholar
  26. Maayani, S., Weinstein, H., Ben-Zvi, N., Cohen, S., Sokolovsky, M.: Psychomimetics as anticholinergic agents. Biochem. Pharmacol.23, 1263–1281 (1974)Google Scholar
  27. Maddox, H., Codefori, E. F., Parcell, R. F.: The synthesis of phencyclidine and other 1-arylcyclohexylamines. J. Med. Chem.8, 230–235 (1965)Google Scholar
  28. Magour, S., Coper, H., Fähndrich, Ch.: The effects of chronie treatment withd-amphetamine on food intake, body weight, locomotor activity and subcellular distribution of the drug in rat brain. Psychopharmacologia (Berl.)34, 45–54 (1974)Google Scholar
  29. Magour, S., Coper, H., Fähndrich, Ch.: The effect of chronic self-administration ofd-amphetamine on food intake and locomotor activity. Psychopharmacologia (Berl.)45, 267–276 (1976)Google Scholar
  30. Mushlin, B. E., Grell, C. F., Cochin, J.: Studies on tolerance. I: The role of the interval between doses on the development of tolerance to morphine. J. Pharmacol. Exp. Ther.196, 280–287 (1976)Google Scholar
  31. Paster, A., Maayani, S., Weinstein, H., Sokolovsky, M.: Cholinolytic action of phencyclidine derivatives. Eur. J. Pharmacol.27, 270–274 (1974)Google Scholar
  32. Pearl, J., Aceto, M. D., Harris, L. S.: Prevention of writhing and other effects of narcotics and narcotic antagonists in mice. J. Pharmacol. Exp. Ther.160, 217–230 (1967)Google Scholar
  33. Pearl, J., Stander, H., McKean, D. B.: Effects of analgesics and other drugs on mice in phenylquinone and rotarod tests. J. Pharmacol. Exp. Ther.167, 9–13 (1969)Google Scholar
  34. Pinchasi, I., Maayani, S., Egozy, Y., Sokolovsky, M.: On the interaction of drugs with the cholinergic nervous system. II. Crosstolerance between phencyclidine derivatives and cholinergic drugs. Psychopharmacology56, 37–40 (1978)Google Scholar
  35. Pinchasi, I., Maayani, S., Sokolovsky, M.: On the interaction of drugs with the cholinergic nervous system. III. Tolerance to phencyclidine derivatives: in vivo and in vitro studies. Biochem. Pharmacol.26, 1671–1679 (1977)Google Scholar
  36. Ross, D. H.: Tolerance to morphine-induced calcium depletion in regional brain areas: characterization with reserpine and protein synthesis inhibitors. Br. J. Pharmacol.55, 431–437 (1975)Google Scholar
  37. Ross, D. H., Lenn, S. C.: Characterization of acute tolerance to morphine using reserpine and cyclohexymide. Biochem. Pharmacol.24, 1135–1137 (1975)Google Scholar
  38. Seevers, M. H., Deneau, G. A.: Physiological aspects of tolerance and physical dependence. In: Physiological pharmacology, vol. I, W. S. Root and F. G. Hofmann, eds., pp. 565–635. New York: Academic Press 1963Google Scholar
  39. Shuster, L., Hannam, R. V., Boyle, W. E.: A simple method for producing tolerance to dihydromorphinone in mice. J. Pharmacol. Exp. Ther.140, 149–154 (1963)Google Scholar
  40. Smith, A. A., Karmin, M., Gavitt, J.: Tolerance of the lenticular effects of opiates. J. Pharmacol. Exp. Ther.156, 85–91 (1967)Google Scholar
  41. Stolerman, I. P., Bunker, P., Jarvik, M. E.: Nicotine tolerance in rats: role of dose and dose interval. Psychopharmacologia (Berl.)34, 317–324 (1974)Google Scholar
  42. Stolermant, I. P., Fink, R., Jarvik, M. E.: Acute and chronic tolerance to nicotine measured by activity in rats. Psychopharmacologia (Berl.)30, 329–342 (1973)Google Scholar
  43. Weinstein, H., Maayani, S., Srebrenik, S., Cohen, S., Sokolovsky, M.: Psychomimetic drugs as anticholinergic agents. II. Quantum-mechanical study on molecular interaction potentials of 1-cyclohexylpiperidine derivatives with the cholinergic receptor. Mol. Pharmacol.9, 820–834 (1973)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Irit Pinchasi
    • 1
  • Saul Maayani
    • 1
  • Mordechai Sokolovsky
    • 1
  1. 1.Department of Biochemistry, The George S. Wise Center for Life SciencesTel-Aviv UniversityTel-AvivIsrael

Personalised recommendations