Advertisement

Environmental and Ecological Statistics

, Volume 1, Issue 3, pp 171–192 | Cite as

Multistate models for monitoring individual trees in permanent observation plots

  • W. Urfer
  • F. H. Schwarzenbach
  • J. Kötting
  • P. Müller
Papers
  • 33 Downloads

Abstract

This interdisciplinary research on forest ecosystems begins with some characteristics of ecosystems which are the basis for the derivation of statistical models for the development and vitality of trees. Several ecological problems which could be solved by longitudinal studies are mentioned. Statistical methods for the evaluation of the crowns of spruce trees (Picea abies Karst) in three permanent observation plots in Switzerland are described. In particular, the time-dependent proportional odds model and a transitional model are used. Through application of these multistate models the data give information on the dependence of an ordered categorical response variable on covariates characterizing the ecosystem. The response variable is observed through infrared aerial photographs. This monitoring system gives insight into the dynamic behaviour of the forest ecosystem. The need for more eco-systematically motivated statistical research using longitudinal studies is identified.

Keywords

Causality ecosystems forest decline infrared aerial photographs longitudinal study proportional odds model score data time-dependent covariates transitional models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Breslow, N.E. and Clayton, D.G. (1993) Approximate inference in generalized linear mixed models.Journal of the American Statistical Association 88, 9–25.Google Scholar
  2. Bonney, G.E. (1987) Logistic regression for dependent binary observations.Biometrics 43, 951–73.Google Scholar
  3. Diggle, P.J. (1990) Time Series — A Biostatistical Introduction. Clarendon Press, Oxford.Google Scholar
  4. Koch, G.G., Landis, J.R., Freeman, J.L., Freeman, D.H. and Lehnen, R.G. (1977) A general methodology for the analysis of experiments with repeated measurement of categorical data.Biometrics 33, 133–58.Google Scholar
  5. Oester, B. (1991) Erfassen der Waldschaden-Entwicklung anhand von großmassstäblichen InfrarotFarbluftbildern. Ph.D. Thesis, Dept. of Geography, University of Zürich.Google Scholar
  6. Oester, B., Raschle, P., Gautschi, B., Scherrer, H.U. and Schwarzenbach, F.H. (1990) Das Sanasilva-Teilprogramm ‘Waldzustandserfassung mit Infrarot-Luftbildern’.Berichte der Eidg. Anstalt für das forstliche Versuchswesen 317, 1–32.Google Scholar
  7. Schwarzenbach, F.H. (1977)Numerische Codierung. Verlag Paul Haupt, Bern/Stuttgart.Google Scholar
  8. Schwarzenbach, F.H. and Oester, B. (1993a). Zur Auswertung von Boniturdaten jährlich wiederholter Kronentaxationen an Einzelbäumen. Erster Teil: Vergleiche zwischen zwei Zeitpunkten.Schweizerische Zeitschrift für Forstwesen 144, 23–40.Google Scholar
  9. Schwarzenbach, F.H.and Oester, B. (1993b) Zur Auswertung von Boniturdaten jährlich wiederholter Kronentaxationen an Einzelbäumen. Zweiter Teil: Analyse zeitlicher Reihen individueller Boniturwerte.Schweizerische Zeitschrift fur Forstwesen 144, 89–113.Google Scholar
  10. Schwarzenbach, F.H., Oester, B., Scherrer, H.U., Gautschi, H., Richrodt, R., Hübscher, R. and Hägeli, M. (1987) Flächenhafte Waldschadenerfassung mit Infrarot-Luftbildern 1:9000. Berichte der Eidg. Anstalt für das forstliche Versuchswesen285.Google Scholar
  11. Stram, D.O., Wei, L.J. and Ware, J.H. (1988) Analysis of repeated ordered categorical outcomes with possibly missing observations and time-dependent covariates.Journal of the American Statistical Association 83, 631–7.Google Scholar
  12. Urfer, W. (1993) Statistical analysis of climatological and ecological factors in forestry — spatial and temporal aspect. InStatistics for the environment, eds V. Barnett and K.F. Turkman, pp. 335–45. Wiley, New York.Google Scholar
  13. Urfer, W. and Pohlmann, H. (1992) Statistical analysis of spatially and serially correlated data. InMathematical Modelling of Forest Ecosystems, eds J. Franke and A. Roeder, pp. 160–7. J.D. Sauerländer's Verlag, Frankfurt/Main.Google Scholar
  14. Ware, J.H., Lipsitz, S. and Speizer, F.E. (1988) Issues in the analysis of repeated categorical outcomes.Statistics in Medicine 7, 95–107.Google Scholar
  15. Zeger, S.L. and Liang, K.-Y. (1992) An overview of methods for the analysis of longitudinal data.Statistics in Medicine 11, 1825–39.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • W. Urfer
    • 1
  • F. H. Schwarzenbach
    • 1
  • J. Kötting
    • 1
  • P. Müller
    • 1
  1. 1.Department of StatisticsUniversity of DortmundDortmundGermany

Personalised recommendations