Molecular and General Genetics MGG

, Volume 154, Issue 3, pp 263–267 | Cite as

RNA-linked nascent DNA pieces in T7 phage-infectedEscherichia coli cells

I. Role of gene 6 exonuclease in removal of the linked RNA
  • Kazuo Shinozaki
  • Tuneko Okazaki
Article

Summary

The presence of RNA-linked nascent DNA pieces in T7 phage-infectedEscherichia coli cells has been shown by the selective degradation of the 5′-hydroxyl-terminated nascent DNA, produced by alkali or RNase treatment, with spleen exonuclease. At 43°C, the proportion of RNA-linked DNA pieces in nascent short DNA is 50 to 60% in T7ts136 (ts mutant of gene 6) phage-infectedE. coli, whereas that in T7 wild-type phage-infected cells is less than 6%. Joining of the nascent pieces is greatly retarded in T7ts136-infectedE. coli temperature sensitivepolA mutants at 43° C. These results suggest that gene 6 exonuclease plays a role in removal of the linked RNA during the discontinuous replication of T7 DNA.

Keywords

Coli Cell Coli Temperature RNase Treatment Selective Degradation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fröhlich, B., Powling, A., Knippers, R.: Formation of concatemeric DNA in bacteriophage T7-infected bacteria. Virology65, 455–468 (1975)Google Scholar
  2. Grippo, P., Richardson, C.C.: Deoxyribonucleic acid polymerase of bacteriophage T7. J. biol. Chem.246, 6867–6873 (1971)Google Scholar
  3. Hinkle, D.C., Richardson, C.C.: Bacteriophage T7 deoxynucleic acid replication in vitro. J. biol. Chem.249, 2974–2984 (1974)Google Scholar
  4. Kerr, C., Sadowski, P.D.: Gene 6 exonuclease of bacteriophage T7. I. Purification and properties of the enzyme. J. biol. Chem.247, 305–310 (1972a)Google Scholar
  5. Kerr, C., Sadowski, P.D.: Gene 6 exonuclease of bacteriophage T7. II. Mechanism of the reaction. J. biol. Chem.247, 311–318 (1972b)Google Scholar
  6. Kolodner, R., Richardson, C.C.: Replication of duplex DNA by bacteriophage T7 DNA polymerase and gene 4 protein is accompanied by hydrolysis of nucleoside 5′-triphosphates. Proc. nat. Acad. Sci. (Wash.)74, 1525–1529 (1977)Google Scholar
  7. Kurosawa, Y., Ogawa, T., Hirose, S., Okazaki, T., Okazaki, R.: Mechanism of DNA chain growth. XV. RNA-linked nascent DNA pieces inEscherichia coli strains assayed with spleen exonuclease. J. molec. Biol.96, 653–664 (1975)Google Scholar
  8. Mark, D.F., Richardson, C.C.:Escherichia coli thioredoxin. A subunit of bacteriophage T7 DNA polymerase. Proc. nat. Acad. Sci. (Wash.)73, 780–784 (1976)Google Scholar
  9. Masamune, Y., Frenkel, G.D., Richardson, C.C.: A mutant of bacteriophage T7 deficient in polynucleotide ligase. J. biol. Chem.246, 6874–6879 (1971)Google Scholar
  10. Miller, R.C., Lee, M.: The role of bacteriophage T7 exonuclease (gene 6) in genetic recombination and production of concatemers. J. molec. Biol.101, 223–234 (1976)Google Scholar
  11. Ogawa, T., Hirose, S., Okazaki, T., Okazaki, R.: Mechanism of DNA chain growth. XVI. Analyses of RNA-linked DNA pieces inEscherichia coli with polynucleotide kinase. J. molec. Biol.112, 121–140 (1977)Google Scholar
  12. Okazaki, R.: Short-chain intermediates in DNA replication. DNA replication (Wickner, R.B. ed.), pp. 1–32. New York: Marcel Dekker 1974Google Scholar
  13. Okazaki, R., Okazaki, T., Hirose, S., Sugino, A., Ogawa, T., Kurosawa, Y., Shinozaki, K., Tamanoi, F., Seki, T., Machida, Y., Fujiyama, A., Kohara, Y.: Discontinuous replication in prokaryotic systems. DNA synthesis and its regulation (Goulian, M.D., Hanawalt, P. eds.), pp. 832–862. California: W.A. Benjamin 1975Google Scholar
  14. Powling, A., Knippers, R.: Some functions involved in bacteriophage T7 genetic recombination. Molec. gen. Genet.134, 173–180 (1974)Google Scholar
  15. Sadowski, P.D., Kerr, C.: Degradation ofEscherichia coli B deoxyribonucleic acid after infection with deoxyribonucleic acid-defective amber mutants of bacteriophage T7. J. Virol.6, 149–155 (1970)Google Scholar
  16. Scherzinger, E., Klotz, G.: Studies on bacteriophage T7 DNA synthesis in vitro. Molec. gen. Genet.141, 233–249 (1975)Google Scholar
  17. Scherzinger, E., Lanka, E., Morelli, G., Seiffert, D., Yuki, A.: Bacteriophage T7 induced DNA-priming protein. A novel enzyme involved in DNA replication. Europ. J. Biochem.72, 543–558 (1977)Google Scholar
  18. Sternglanz, R., Wang, H.F., Donegan, J.J.: Evidence that both growing DNA chains at a replication fork are synthesized discontinuously. Biochemistry15, 1838–1843 (1976)Google Scholar
  19. Strätling, W., Ferdinand, F.J., Krause, E., Knippers, R.: Bacteriophage T7-DNA replication in vitro: An experimental system. Europ. J. Biochem.38, 160–169 (1973)Google Scholar
  20. Studier, F.W.: The genetics and physiology of bacteriophage T7. Virology39, 562–574 (1969)Google Scholar
  21. Studier, F.W.: Bacteriophage T7. Science176, 367–376 (1972)Google Scholar
  22. Type, B-K., Nyman, P-O., Lehman, I.R., Hochhauser, S., Wiess, B: Transient accumulation of Okazaki fragments as a result of uracil incorporation into nscent DNA. Proc. nat. Acad. Sci. (Wash.)74, 154–157 (1977)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Kazuo Shinozaki
    • 1
  • Tuneko Okazaki
    • 1
  1. 1.Institute of Molecular Biology, Faculty of ScienceNagoya UniversityNagoyaJapan

Personalised recommendations