Letters in Mathematical Physics

, Volume 13, Issue 1, pp 83–92 | Cite as

Connections on Clifford bundles and the Dirac operator



It is shown, how, in the setting of Clifford bundles, the spin connection (or Dirac operator) may be obtained by averaging the Levi-Civita connection (or Kähler-Dirac operator) over the finite group generated by an orthonormal frame of the base manifold.

The familiar covariance of the Dirac equation under a simultaneous transformation of spinors and matrix representations emerges very naturally in this scheme, which can also be applied when the manifold does not possess a spin structure.


Manifold Covariance Statistical Physic Group Theory Finite Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ivanenko, AD. and Landau, AL.,Z. Phys. 48, 340 (1928).Google Scholar
  2. 2.
    Kähler, E.,Abh. Deutsch. Akad. Wiss. Berlin (Math.-Phys.) 4 (1960)and 1 (1961);Rend. Mat. 21, 425 (1962).Google Scholar
  3. 3.
    Graf, AW.,Ann. Inst. H. Poincaré A29, 85 (1978).Google Scholar
  4. 4.
    Benn, AI. M. and Tucker, AR. W.,Commun. Math. Phys. 89, 34 (1983);Nuovo Cim. 88A, 273 (1985).Google Scholar
  5. 5.
    Benn, AI. M. and Tucker, AR. W.,Phys. Lett. 130B, 177 (1983).Google Scholar
  6. 6.
    Benn, AI. M. and Tucker, AR. W.,Commun. Math. Phys. 98, 53 (1985).Google Scholar
  7. 7.
    Greub, AW.,Multilinear Algebra, 2nd ed., Springer-Verlag, New York, Heidelberg, Berlin, 1978.Google Scholar
  8. 8.
    Atiyah, M. F.,Arbeitsgem. Forschung Landes Nordrhein-Westfalen, Naturwissenschaften 200 (1970).Google Scholar
  9. 9.
    Blau, M., ‘Clifford Algebras and Kähler-Dirac Spinors’, University of Vienna preprint, UWThPh-1986-16, and Master's Thesis (unpublished).Google Scholar
  10. 10.
    Brauer, AR. and Weyl, AH.,Am. J. Math. 57, 425 (1935).Google Scholar
  11. 11.
    Chevalley, AC.,The Algebraic Theory of Spinors, Columbia University Press, New York, 1954.Google Scholar
  12. 12.
    Thirring, AW.,A Course on Mathematical Physics, Vol. 2, Field Theory, 2nd ed., Springer, New York, 1986.Google Scholar
  13. 13.
    Greub, AW., Halperin, AS., and Vanstone, AR.,Connections, Curvature and Cohomology, Vol.II, Academic Press, New York, London, 1973.Google Scholar
  14. 14.
    Al Saad, A. and Benn, I. M., ‘Ideal Preserving Lorentzian Connections’, University of Lancaster preprint (1985).Google Scholar
  15. 15.
    Salingaros, AN.,J. Math. Phys. 22, 226 (1981), and23, 1 (1982).Google Scholar
  16. 16.
    Riesz, AM.,Clifford Numbers and Spinors, Lecture Series No. 38, University of Maryland, College Par, 1958.Google Scholar
  17. 17.
    Becher, AP. and Joos, AH.,Z. Phys. C15, 343 (1982).Google Scholar

Copyright information

© D. Reidel Publishing Company 1987

Authors and Affiliations

  • M. Blau
    • 1
  1. 1.Institut für Theoretische PhysikUniversität WienViennaAustria

Personalised recommendations