Letters in Mathematical Physics

, Volume 13, Issue 1, pp 59–68 | Cite as

Super-Kadomtsev—Petviashvili hierarchy and super-Grassmann manifold

  • Kimio Ueno
  • Hirofumi Yamada


The super-Kadomtsev-Petviashvili (SKP) hierarchy is introduced, and the general solutions are explicitly represented in terms of a superdeterminant. It is proved that the SKP hierarchy can be regarded as a dynamical system on a super-Grassmann manifold of infinite dimensions.


Manifold Dynamical System Statistical Physic General Solution Group Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sato, AM. and Sato, AY., ‘Soliton Equations as Dynamical Systems on Infinite Dimensional Grassmann Manifold’, H. Fujita, P. D. Lax, and G. Strang (eds.),Proc. U.S.-Japan Seminar ‘Nonlinear Partial Differential Equations in Applied Science’, Kinokuniya, North-Holland, Amsterdam, 1982, pp. 259–271.Google Scholar
  2. 2.
    Date, AE., Jimbo, AM., Kashiwara, AM., and Miwa, AT.,Publ. RIMS, Kyoto Univ. 19, 943–1001 (1983).Google Scholar
  3. 3.
    Ueno, AK. and Yamada, AH., ‘A Supersymmetric Extension of Infinite Dimensional Lie Algebras’,RIMS-Kokyuroku 554, 91–101 (1985).Google Scholar
  4. 4.
    Ueno, K. and Yamada, H., ‘A Supersymmetric Extension of Nonlinear Integrable Systems’ (preprint), to appear in J. Westerholm and J. Hietarinta (eds.),Proc. Conference ‘Topological and Geometrical Methods in Field Theory’, World Scientific, Singapore.Google Scholar
  5. 5.
    Ueno, K. and Yamada, H., in preparation.Google Scholar
  6. 6.
    Chaichian, AM. and Kulish, AP. P.,Phys. Lett. 79B, 413–416 (1978).Google Scholar
  7. 7.
    Gürses, AM. and Oğuz, AÖ,Lett. Math. Phys. 11, 235–246 (1986).Google Scholar
  8. 8.
    Olshanetsky, AM. A.,Commun. Math. Phys. 98, 65–77 (1985).Google Scholar
  9. 9.
    Kupershmidt, AB. A.,Phys. Lett. 102A, 213–215 (1984);Proc. Natl. Acad. Sci. USA 81, 6562–6563 (1984); ‘Classical Superintegrable Systems’, preprint (1984).Google Scholar
  10. 10.
    Manin, AYu. I. and Radul, AA. O.,Commun. Math. Phys. 98, 65–77 (1985).Google Scholar
  11. 11.
    Rogers, AA.,J. Math. Phys. 21, 1352–1365 (1980).Google Scholar
  12. 12.
    Boyer, AC. P. and Gitler, AS.,Trans. Amer. Math. Soc. 285, 241–267 (1984).Google Scholar
  13. 13.
    Leites, AD. A.,Russian Math. Surveys 35, 1–64 (1980).Google Scholar

Copyright information

© D. Reidel Publishing Company 1987

Authors and Affiliations

  • Kimio Ueno
    • 1
  • Hirofumi Yamada
    • 2
  1. 1.Department of MathematicsYokohama City UniversityYokohamaJapan
  2. 2.Department of MathematicsHiroshima UniversityHiroshimaJapan

Personalised recommendations