Russian Physics Journal

, Volume 36, Issue 4, pp 288–296 | Cite as

Asymptotic study of three-dimensional flows of a viscous gas near blunt bodies with a permeable surface

  • S. V. Peigin
Article
  • 15 Downloads

Abstract

Hypersonic flow of a viscous gas near blunt bodies with a permeable surface is investigated for large Reynolds numbers with intense blow-in (suction) of gas from the surface, including the case when the blow-in (suction) velocity vector is oriented in a different direction from the outer normal to the surface of the body, by asymptotic methods with the help of models of three-dimensional viscous shock and three-dimensional laminar boundary layers. Analytical solutions are presented for the velocity and temperature profiles across the layer and the coefficients of friction and heat transfer on the surface, and the manner in which the basic determining parameters of the problem influence the structure of the perturbed flow and the basic behavior of the integral flow characteristics, which are important for practical applications, and the region of existence of the solution of the initial equations are analyzed.

Keywords

Heat Transfer Boundary Layer Reynolds Number Flow Characteristic Asymptotic Method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    É. A. Gershbein, S. V. Peigin, and G. A. Tirskii, in: Progress in Science and Technology. VINITI. Mechanics of Liquids and Gases [in Russian], Vol. 19, 3–85 (1985).Google Scholar
  2. 2.
    S. V. Peigin and G. A. Tirskii, in: Progress in Science and Technology. VINITI. Mechanics of Liquids and Gases [in Russian], Vol. 22, 62–122 (1988).Google Scholar
  3. 3.
    É. A. Gershbein, Prikl. Mat. Mekh.,38, No. 6, 1015–1023 (1974).Google Scholar
  4. 4.
    E. I. Watson, Aer. Res. Cunc. Repts., No. 2619 (1952).Google Scholar
  5. 5.
    É. A. Gershbein, Izv. Akad. Nauk SSSR, MZhG, No. 6, 66–74 (1970).Google Scholar
  6. 6.
    É. A. Gershbein, Izv. Akad. Nauk SSSR, MZhG, No. 2, 112–118 (1973).Google Scholar
  7. 7.
    É. A. Gershbein and S. V. Peigin, Izv. Akad. Nauk SSSR, MZhG, No. 5, 28–36 (1979).Google Scholar
  8. 8.
    H. K. Cheng, JAS Paper, No. 63 (1963).Google Scholar
  9. 9.
    É. A. Gershbein, in: Problems in Mechanics of a Continuous Medium [in Russian], Mosk. Gost. Univ., Moscow (1978), pp. 144–156.Google Scholar
  10. 10.
    É. A. Gershbein, in: Hypersonic Three-Dimensional Flows in the Presence of Physicochemical Transformations [in Russian], Mosk. Gost. Univ., Moscow (1981), pp. 29–51.Google Scholar
  11. 11.
    T. C. Lin, B. L. Reeves, and D. Siegelman, AIAA J.,15, No. 8, 1130–1137 (1977).Google Scholar
  12. 12.
    M. G. Lebedev and K. G. Savinov, Izv. Akad. Nauk SSSR, MZhG, No. 2, 164–169 (1969).Google Scholar
  13. 13.
    J. D. Cole, Perturbation Methods in Mechanics [Russian translation], Mir, Moscow (1972).Google Scholar
  14. 14.
    É. A. Gershbein, Izv. Akad. Nauk SSSR, MZhG, No. 2, 47–56 (1975).Google Scholar
  15. 15.
    G. G. Chernyi, Gas Flow with High Supersonic Velocity [in Russian], Fizmatigiz, Moscow (1959).Google Scholar
  16. 16.
    B. M. Bulakh, in: Transsonic Gas Flows [in Russian], Saratov State University, Saratov (1964), pp. 151–164.Google Scholar
  17. 17.
    W. D. Hayes and R. F. Probstein, Hypersonic Flow Theory, Academic Press, NY (1966).Google Scholar
  18. 18.
    I. I. Vigdororich and V. A. Levin, Hypersonic Flow around Bodies with Intense Blow-In [in Russian], Mosk. Gos. Univ., Moscow (1983).Google Scholar
  19. 19.
    V. Ya. Neiland, Uch. Zap. TsAGI,3, No. 6, 29–40 (1972).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • S. V. Peigin

There are no affiliations available

Personalised recommendations