Advertisement

Journal of Materials Science

, Volume 13, Issue 4, pp 871–875 | Cite as

Formation of the K-state in a Ni-Fe-Mo-Cu alloy

  • R. J. Willey
Papers

Abstract

The electrical resistivity, magnetic saturation and Vicker's hardness of the alloy 79wt% Ni-16wt% Fe-4.3wt% Mo-0.7 wt% Cu have been measured as a function of heat treatment in the range 300 to 500° C. These properties have also been measured on a binary 75 at. % Ni-25 at. % Fe alloy heat treated in the same temperature range so as to produce atomic order. An increase in resistivity in the quaternary alloy has been found and, by comparison with the binary alloy, this has been associated with short range atomic order.

Keywords

Polymer Heat Treatment Electrical Resistivity Magnetic Saturation Short Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. C. Jackson andE. W. Lee,J. Mater Sci. 1 (1966) 362.Google Scholar
  2. 2.
    M. P. Ravdel andI. P. Selisskii,Fiz. Met. i Met. 13 (1965) 957.Google Scholar
  3. 3.
    R. G. Davies,J. Phys. Chem. Sol. 24 (1963) 985.Google Scholar
  4. 4.
    E. A. Starke, V. Gerold andA. G. Guy,Acta Met. 13 (1965) 957.Google Scholar
  5. 5.
    H. Thomas,Z. Phys. 129 (1951) 219.Google Scholar
  6. 6.
    L. Popov,Dokl Akad SSSR 129 (1959) 1208.Google Scholar
  7. 7.
    A. Taylor andK. G. Hinton,J. Inst Metals 81 (1952) 169.Google Scholar
  8. 8.
    W. Schule andR. Colella,ibid 97 (1959) 270.Google Scholar
  9. 9.
    R. M. Bozorth andJ. G. Walker,Phys. Rev. 89 (1953) 624.Google Scholar
  10. 10.
    R. D. Enoch andA. Winterborn,Brit. J. Appl. Phys. 18 (1967) 1407.Google Scholar
  11. 11.
    R. J. Wakelin andE. L. Yates,Proc. Phys. Soc. B66 (1953) 221.Google Scholar
  12. 12.
    T. Taoko andT. Ohtsuka,J. Phys. Soc. Japan 9 (1945) 712.Google Scholar
  13. 13.
    S. Chikazumi,ibid 5 (1950) 327.Google Scholar
  14. 14.
    I. M. Puzey, V. I. Goman'kov andA. A. Loshmanov,Phys. Met. Metall. 22 (1966) 134.Google Scholar
  15. 15.
    S. Iida,J. Phys. Soc. Japan 7 (1952) 373.Google Scholar
  16. 16.
    Idem, ibid 9 (1954) 346.Google Scholar
  17. 17.
    Idem, ibid 10 (1955) 9.Google Scholar
  18. 18.
    Idem, ibid 10 (1955) 769.Google Scholar
  19. 19.
    S. Chikazumi, “Physics of Magnetism” (Wiley, New York, 1964) p. 494.Google Scholar
  20. 20.
    F. Brailsford, “Magnetic Materials”, (Methuen, London, 1960) p. 117.Google Scholar
  21. 21.
    F. Pfeifer andI. Pfeiffer,Z. Metallkde. 55 (1964) 398.Google Scholar
  22. 22.
    A. Ferro andG. Montalenti,IEEE Trans. Mag. 5.3 (1969) 291.Google Scholar
  23. 23.
    E. A. Nesbitt, S. W. Batterman, L. D. Fullerton andA. J. Williams,J. Appl. Phys. 36 (1965) 1235.Google Scholar
  24. 24.
    W. D. Kehr,ibid 41 (1970) 1857.Google Scholar
  25. 25.
    E. Josso,Rev. de Met. 49 (1952) 727.Google Scholar
  26. 26.
    M. V. Dekhtyar,Fiz. Met. i Metall. 3 (1956) 55.Google Scholar
  27. 27.
    B. G. Lyashenko, D. F. Lityin andI. M. Puzey,J. Phys. Soc. Japan. Suppl. B-III 17 (1962) 49.Google Scholar
  28. 28.
    I. Preece andJ. E. Thompson,J. Phys. D 4 (1971) 723.Google Scholar
  29. 29.
    H. Lipson andH. Steeple, “Interpretation of X-ray powder patterns” (Macmillan, London, 1970) p. 185.Google Scholar

Copyright information

© Chapman and Hall Ltd 1978

Authors and Affiliations

  • R. J. Willey
    • 1
  1. 1.Department of MetallurgyUniversity CollegeSwanseaUK

Personalised recommendations