Journal of Materials Science

, Volume 13, Issue 4, pp 750–758 | Cite as

A non-linear structural relaxation model for the refractive index of glass during annealing

  • Henry S. -Y. Hsich


A two internal thermodynamic ordering parameter non-linear model is used to explain the structural relaxation of glass. These two internal thermodynamic ordering parameters are also used to characterize the frozen-in structural state of glass. For an isobaric isothermal annealing process, the internal state of the glass can be characterized by the two internal ordering parameters such as fictive temperature,Tf, and configurational part of activation energy,Hs. Therefore, these two internal thermodynamic ordering parameters are used in a non-linear structural relaxation model of glass for explaining the volume relaxation and predicting the refractive index of glass during annealing, and they are also extended to characterize the thermal history of the frozen-in structure of the glassy state.


Polymer Activation Energy Refractive Index Structural State Internal State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Q. Tool,J. Res. Nat. Bur. Stand. 34 (1945) 199.Google Scholar
  2. 2.
    Idem, J. Amer. Ceram. Soc. 29 (1946) 240.Google Scholar
  3. 3.
    H. N. Ritland,J. Soc. Glass Tech. 39 (1955) 99.Google Scholar
  4. 4.
    R. Gardon andO. S. Narayanaswamy,J. Amer. Ceram. Soc. 53 (1970) 380.Google Scholar
  5. 5.
    S. M. Ohlberg andT. C. Woo,J. Non-Cryst. Solids 14 (1974) 280.Google Scholar
  6. 6.
    M. J. Crochet, J. De Bast, P. Gilard andG. Tackels,ibid 14 (1974) 242.Google Scholar
  7. 7.
    I. Prigogine andR. Defay, “Chemical Thermodynamics”, transcribed by D. H. Everett, (John Willey, New York, 1972) p. 229.Google Scholar
  8. 8.
    R. O. Davies andG. O. Jones,Adv. Phys. 2 (1953) 370.Google Scholar
  9. 9.
    Idem, Proc. Roy. Soc. 217A, (1953) 26.Google Scholar
  10. 10.
    A. J. Staverman,Rheological Acta 5 (1966) 283.Google Scholar
  11. 11.
    Idem, Rubber Chem. and Tech. 41 (1968) 544.Google Scholar
  12. 12.
    M. Goldstein,J. Appl. Phys. 46 (1975) 4153.Google Scholar
  13. 13.
    H. S. -Y. Hsich,J Amer. Ceram. Soc. (1977).Google Scholar
  14. 14.
    F. E. Simon,Zeit. Anorg. Chem. 203 (1931) 219.Google Scholar
  15. 15.
    E. A. Dimarzio,J. Appl. Phys 45 (1974) 4143.Google Scholar
  16. 16.
    Spinner andA. Napolitano,J. Res. Nat. Bur. Stand. 70A (1966) 147.Google Scholar
  17. 17.
    H. S. -Y. Hsich, unpublished work.Google Scholar
  18. 18.
    Idem, Library Report of Brockway Glass Co., Vol. 19, Report 6 (1976).Google Scholar
  19. 19.
    E. H. Lee, T. G. Rogers, andT. C. Woo,J. Amer. Ceram. Soc. 48 (1965) 480.Google Scholar
  20. 20.
    O. S. Narayanaswamy,ibid 54 (1971) 491.Google Scholar
  21. 21.
    P. B. Macedo andA. Napolitano,J. Res. Nat. Bur. Stand. 71A (1967) 231.Google Scholar
  22. 22.
    G. Goldback andG. Rehage,Rheo Acta. 6 (1967) 30.Google Scholar
  23. 23.
    Idem, J. Polymer Sci. C 6 (1967) 2289.Google Scholar
  24. 24.
    G. Rehage andG. Goldback,Bunsenges 70 (1966) 1144.Google Scholar
  25. 25.
    R. N. Haward, “The Physics of Glassy Polymers”, (Halsted Press, New York, 1963) p. 86.Google Scholar
  26. 26.
    M. Prod'homme,Rev. Int. Htes Temp. et Refract. 12 (1975) 79.Google Scholar

Copyright information

© Chapman and Hall Ltd 1978

Authors and Affiliations

  • Henry S. -Y. Hsich
    • 1
  1. 1.Brockway Glass Company Inc.BrockwayUSA

Personalised recommendations