Advertisement

Histochemistry

, Volume 88, Issue 3–6, pp 427–433 | Cite as

Victoria blue B — a nuclear stain for cytology

A cytophotometric study
  • E. Schulte
  • D. Wittekind
  • V. Kretschmer
Article

Summary

The aim of this study was to investigate the staining characteristics of Victoria Blue B in alcohol solutions. Cytological specimens (liver and spleen tissue imprints, blood smears) were stained with methanol solutions of commercially available Victoria Blue B-Cl and with pure Victoria Blue B-BF4. The dye concentration, staining time, and protone concentration of the dye solution were varied. The dye solutions were characterized using spectrophotometry and thin-layer chromatography. Cytophotometry and image analysis were used to quantitate the staining pattern of cell nuclei. Feulgen-stained slides were used as controls. Victoria Blue B-BF4 gave excellent nuclear staining exhibiting a quantitative dye-substrate relationship, whereas commercial dyes resulted in lower staining intensity and less distinct nuclear texture. Dye concentration and staining time were, over wide ranges, not of critical importance for the quality of the staining. Under certain staining conditions, only cell nuclei were stained, with the background remaining completely unstained. We presume that, in alcohol solutions, Victoria Blue dye binds as a neutral dye molecule in conjunction with its anion. Victoria Blue B-BF4 staining provides a simple and reproducible staining technique for cytology which is suitable for use in automated cell-pattern recognition.

Keywords

Cell Nucleus Methanol Solution Blood Smear Nuclear Staining Alcohol Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coats E (1969) Aggregation of dyes in aqueous solutions. J Soc Dyers Colour 85:355–368Google Scholar
  2. Drawert H (1968) Vitalfärbung und Vitalfluorochromierung pflanzlicher Zellen und Gewebe. Protoplasmatologie II D 3 Springer, Wien New YorkGoogle Scholar
  3. Gilliland JW, Dean WW, Stastny M, Lubvano GJ (1979) Stabilized Romanowsky blood stain. Stain Technol 54:141–149Google Scholar
  4. Graumann W (1953) Zur Standardisierung des Schiffschen Reagens. Z Wiss Mikrosk 61:225–226Google Scholar
  5. Goldstein DJ (1961) Mechanism of differential staining of nucleic acids. Nature 186:407–408Google Scholar
  6. Harms H (1965) Handbuch der Farbstoffe für die Mikroskopie. Staufen-Verlag, Kamp-LintfortGoogle Scholar
  7. Horobin RW (1983) Histochemistry. Theoretical and applied. G. Fischer, StuttgartGoogle Scholar
  8. Horobin RW, Bennion PJ (1973) Interrelation of the size and substantivity of dyes: the role of van der Waals attractions and hydrophobic bonding in biological staining. Histochemie 33:191–204Google Scholar
  9. Ivic M (1959) Neue selektive Färbungsmethode der A- und B-Zellen der Langerhansschen Inseln. Anat Anz 107:347–350Google Scholar
  10. Lillie RD (1977) Conn's biological stains. Williams and Wilkins, BaltimoreGoogle Scholar
  11. Lillie RD, Reynolds C, Pizzolato P (1979) Phosphomolybdic and phosphotungstic acid — Victoria Blue R stains two histo-chemically distinct collagens: dense dark blue and loose areolar pale green. J Histochem Cytochem 27:1092–1094Google Scholar
  12. Lucke S, Ziegler B, Diaz-Alonso JM, Hahn HJ (1985) Eignung spezifischer Färbemethoden für die Bestimmung des B-Zell-volumens im Rattenpankreas mit normalem und reduziertem Insulingehalt. Acta Histochem 77:107–116Google Scholar
  13. Lustgarten S (1886) Victoriablau, ein neues Tinctionsmittel für elastische Fasern und für Kerne. Med Jahrb 1:285–289Google Scholar
  14. Marshall PN, Horobin RW (1973a) The mechanism of action of “mordant” dyes — a study using preformed metal complexes. Histochemie 35:361–371Google Scholar
  15. Marshall PN, Horobin RW (1973b) Measurements of the affinities of basic and “mordant” dyes for various tissue substrates. Histochemie 36:303–312Google Scholar
  16. Nettleton GS, Martin AW (1979) Separation of Fuchsin analogs using thin layer chromatography. Stain Technol 54:213–216Google Scholar
  17. Perrin DD, Dempsey B (1974) Buffers for pH and metal ion control. Chapman and Hall, London, pp 76–81Google Scholar
  18. Romeis B (1968) Mikroskopische Technik. R Oldenbourg, München WienGoogle Scholar
  19. Tsekos I (1973) Mikrospektralphotometrische Untersuchungen zum Speichermechanismus der kationischen Farbstoffe Viktoriablau B und 4R durch die lebende und tote Pflanzenzelle. Histochemie 36:201–217Google Scholar
  20. Wittekind D (1985) Standardization of Dyes and Stains for Automated Cell Pattern Recognition. Anal Quant Cytol Histol 7:6–30Google Scholar
  21. Wittekind D, Schulte E (1987) Die Bedeutung der Standardisierung der Zell- und Gewebspräparation für bildanalytische Operationen. Labormedizin (in press)Google Scholar
  22. Wittekind D, Hilgarth M, Kretschmer V, Seiffert W, Zipfel E (1982) The new and reproducible Papanicolaou stain. Anal Quant Cytol Histol 4:286–294Google Scholar
  23. Wohlrab F, Hahn von Dorsche H, Krautschick I, Schmidt S (1985) On the specificity of insulin staining by Victoria Blue 4R. Histochem J 17:515–518Google Scholar
  24. Zanker V (1981) Grundlagen der Farbstoff-Substrat-Beziehungen in der Histochemie. Acta Histochem (Suppl) 21:151–168Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • E. Schulte
    • 1
  • D. Wittekind
    • 1
  • V. Kretschmer
    • 1
  1. 1.Anatomisches Institut IIFreiburg im BreisgauFederal Republic of Germany

Personalised recommendations