Journal of Materials Science

, Volume 28, Issue 19, pp 5265–5268 | Cite as

Porosity dependence of material elastic moduli

  • M. Kupkova


A new equationE =E0(1+aP+bP2)/(1+cP), whereE andE0 are Young's moduli at porosityP and zero, respectively, anda, b, c are constants, has been derived. Our theoretical derivation is based on the dependence of sound velocity on the Young's modulus of the material.


Polymer Porosity Elastic Modulus Sound Velocity Theoretical Derivation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. M. Spriggs,J. Amer. Ceram. Soc. 44 (1961) 628.CrossRefGoogle Scholar
  2. 2.
    J. C. Wang,J. Mater. Sci. 19 (1984) 801.CrossRefGoogle Scholar
  3. 3.
    J. K. Mackenzie,Proc. Phys. Soc. London 63B (1950) 2.CrossRefGoogle Scholar
  4. 4.
    W. A. Fate,J. Amer. Ceram. Soc. 57 (1974) 372.CrossRefGoogle Scholar
  5. 5.
    K. K. Phani andS. K. Niyogi,J. Mater. Sci. 22 (1987) 257.CrossRefGoogle Scholar
  6. 6.
    D. P. H. Hasselman,J. Amer. Ceram. Soc. 45 (1962) 452.CrossRefGoogle Scholar
  7. 7.
    J. Kvasnica, A. Havránek, P. Lukac andB. Sprusil, “Mechanics” (in Czech) (Academia, Praha, 1988) p. 375.Google Scholar
  8. 8.
    A. M. Kosevic, “Physical Mechanics of Real Crystals” (in Russian) (Naukova dumka, Kiev, 1981) p. 27.Google Scholar
  9. 9.
    S. Doniach andE. H. Sondheimer, “Green's Functions for Solid State Physicists” (W. Benjamin, Reading, Massachusetts, 1974) p. 96.Google Scholar
  10. 10.
    J. Kvasnica, A. Havránek, P. Lukac andB. Sprusil, “Mechanics” (in Czech) (Academia, Praha 1988) p. 410.Google Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • M. Kupkova
    • 1
  1. 1.Institute of Materials Research of the Slovak Academy of SciencesKosiceSlovakia

Personalised recommendations