Skip to main content
Log in

A micro-mechanical model for crack growth resistance of particulate-reinforced metal-matrix composites

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Particulate-reinforced metal-matrix composites are being developed to satisfy the need for high stiffness, high strength materials by combining the beneficial properties of both metals and ceramics. The use of such composites as structural members necessitates an understanding of their damage tolerance. A model relating the crack growth resistance to initiation toughness and tensile properties is developed in this paper. The crack growth toughness has also been related to fundamental microstructural properties of these composites. A critical ratio of Young's modulus to flow stress to enable stable crack growth has been established. Suitable suggestions for tailoring the microstructure to optimize crack growth toughness have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Manoharan andJ. J. Lewandowski,Scripta Metall. 23 (1989) 301.

    Article  CAS  Google Scholar 

  2. S. V. Kamat, J. P. Hirth andR. Mehrabian,Acta Metall. 37 (1989) 2395.

    Article  CAS  Google Scholar 

  3. Y. Flom andR. J. Arsenault,ibid. 37 (1989) 2413.

    Article  CAS  Google Scholar 

  4. M. Manoharan andJ. J. Lewandowski,ibid. 38 (1990) 489.

    Article  CAS  Google Scholar 

  5. P. C. Paris, H. Tada, A. Zahoor andH. Ernst, STP 668 (American Society for Testing and Materials, Philadelphia, 1980) p. 5.

    Google Scholar 

  6. J. R. Rice andE. P. Sorensen,J. Mech. Phys. Solids 26 (1978) 163.

    Article  Google Scholar 

  7. J. W. Hutchinson andP. C. Paris, ASTM STP 668 (American Society for Testing and Materials, Philadelphia, 1980) p. 37.

    Google Scholar 

  8. R. H. Dean, ASTM STP 803, Vol. 1 (American Society for Testing and Materials, Philadelphia, 1981) p. 39.

    Google Scholar 

  9. C. F. Shih,J. Mech. Phys. Solids 29 (1981) 305.

    Article  Google Scholar 

  10. W. J. Drugan, J. R. Rice andT. L. Sham,ibid. 30 (1982) 447.

    Article  Google Scholar 

  11. J. R. Rice, W. J. Drugan andT. L. Sham, STP 700 (American Society for Testing and Materials, Philadelphia, 1980) p. 189.

    Google Scholar 

  12. G. Green andJ. F. Knott,J. Mech. Phys. Solids 23 (1970) 167

    Article  Google Scholar 

  13. Idem, J. Engng. Mater. Tech. 98 (1976) 37.

    Article  CAS  Google Scholar 

  14. L. Herman andJ. R. Rice,Metal Sci. 14 (1980) 285.

    Article  Google Scholar 

  15. R. O. Ritchie andA. W. Thompson,Metall. Trans. A 16A (1985) 233.

    Article  CAS  Google Scholar 

  16. J. R. Rice andM. A. Johnson, in “Inelastic Behaviour of Solids” edited by M. F. Kanninenet al. (McGraw-Hill, New York, 1969) p. 641.

    Google Scholar 

  17. C. R. Crowe andR. A. Gray, in Proceedings of 39th Meeting of High Performance Group, Gaithesburg, Pennsylvania, 1984, p. 154.

  18. M. Manoharan andJ. J. Lewandowski,Scripta Metall. 24 (1990) 2357.

    Article  CAS  Google Scholar 

  19. H. Lagace andD. J. Llogs,Can. Metal Quart. 28 (1989) 145.

    Article  CAS  Google Scholar 

  20. Z. Hashin andS. Shtrikman,J. Mech. Phys. Solids 2 (1973) 126.

    Google Scholar 

  21. L. M. Brown, in “Strength of Metals and Alloys”, edited by P. Haasen, V. Gerold and G. Kostorz (Pergamon, Oxford, 1980) p. 1151.

    Google Scholar 

  22. N. Hansen andD. Kuhlmann-Wilsdorf,Mater. Sci. Engng. 18 (1986) 141.

    Article  Google Scholar 

  23. M. F. Ashby, in “Strengthening Methods in Crystals”, edited by A. Kelly and R. B. Nicholson (Elsevier, Amsterdam, 1971) p. 184.

    Google Scholar 

  24. Idem, Z. Metallkok. 55 (1964) 5.

    CAS  Google Scholar 

  25. S. V. Kamat, A. D. Rollet andJ. P. Hirth,Scripta Metall. Mater. 25 (1991) 27.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manoharan, M., Kamat, S.V. A micro-mechanical model for crack growth resistance of particulate-reinforced metal-matrix composites. J Mater Sci 28, 5218–5222 (1993). https://doi.org/10.1007/BF00570067

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00570067

Keywords

Navigation