Probability Theory and Related Fields

, Volume 74, Issue 2, pp 161–198 | Cite as

Diffusion with interactions and collisions between coloured particles and the propagation of chaos

  • Masao Nagasawa
  • Hiroshi Tanaka
Article

Summary

One considers a system ofN particles on the real line which are of two different types (colours). Their dynamics is given by a stochastic differential equation with constant diffusion part; the drift felt by a particle of either type depends on the empirical measures of type 1 and 2 particles at every instant; further a reflection condition is imposed so that particles of different type are not allowed to cross each other. The article studies the Vlasov-McKean limit of the system asN→∞: propagation of chaos and an evolution equation for the limiting empirical measures is established, from where in particular an equation for the separating front between the two types follos.

Keywords

Colour Reflection Differential Equation Stochastic Process Probability Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dunford, N., Schwartz, J.: Linear operators, vol. 1. New York: Interscience 1958Google Scholar
  2. 2.
    Harris, T.E.: Diffusion with “collisions” between particles. J. Appl. Probab.,2, 323–338 (1965)Google Scholar
  3. 3.
    Kusuoka, S., Tamura, Y.: Gibbs measures for mean field potentials. J. Fac. Sci. Univ. Tokyo Sect. 1A Math.31, 223–245 (1984)Google Scholar
  4. 4.
    Maruyama, G.: On the transition probability functions of the Markov processes. Nat. Sci. Rep. Ochanomizu Univ.5, 10–20 (1954)Google Scholar
  5. 5.
    McKean, H.P.: A class of Markov processes associated with non-linear parabolic equations. Proc. Natl. Acad. Sci.56, 1907–1911 (1966)Google Scholar
  6. 6.
    McKean, H.P.: Propagation of chaos for a class of non-linear parabolic equations. Lecture Series in Differential Equations. Washington, D.C.: Catholic Univ. 41–57 (1967)Google Scholar
  7. 7.
    Nagasawa, M.: Segregation of a population in an environment, J. Math. Biol.9, 213–235 (1980)Google Scholar
  8. 8.
    Nagasawa, M.: An application of segregation model for septation ofEscherichia coli. J. Theor. Biol.90, 445–455 (1981)Google Scholar
  9. 9.
    Nagasawa, M., Yasue, K.: A statistical model of mesons. Publication de l'Institut Recherche Mathématique Avancée (CNRS)33, 1–48 (1982/83) Université Lois Pasteur (Strasbourg)Google Scholar
  10. 10.
    Nagasawa, M., Tanaka, H.: A diffusion process in a singular mean-drift-field. Z. Wahrscheinlichkeitstheor. Verw. Geb.68, 247–269 (1985)Google Scholar
  11. 11.
    Nagasawa, M., Tanaka, H.: Propagation of chaos for diffusing particles of two types with singular mean field interaction. Z. Wahrscheinlichkeitstheor. Verw. Geb.71, 69–83 (1986)Google Scholar
  12. 12.
    Saisho, Y., Tanaka, H.: Stochastic differential equations for mutually reflecting Brownian balls. To appear in Osaka J. Math.Google Scholar
  13. 13.
    Shiga, T., Tanaka, H.: Central limit theorem for a system of Markovian particles with mean field interaction. Z. Wahrscheinlichkeitstheor. Verw. Geb.69, 439–445 (1985)Google Scholar
  14. 14.
    Sznitman, A.S.: Non-linear reflecting diffusion processes, and propagation of chaos, and fluctuations associated. J. Funct. Anal.56, 311–336 (1984)Google Scholar
  15. 15.
    Tanaka, H.: Stochastic differential equations with reflecting boundary condition in convex regions, Hiroshima Math. J.9, 163–177 (1979)Google Scholar
  16. 16.
    Tanaka, H.: Limit theorems for certain diffusion processes with interaction. In: Itô, K. (ed.) Stochastic analysis, pp. 469–488. Kinokuniya Co. Ltd., Tokyo, North-Holland 1984Google Scholar
  17. 17.
    Veretennikov, A.Ju.: On strong solutions and explicit formulas for solutions of stochastic integral equations. Mat. Sb.111 (1980). English transl. in Math. USSR Sbornik39, 387–403 (1981)Google Scholar
  18. 18.
    Wilks, S.S.: Mathematical statistics. New York: Wiley 1962Google Scholar
  19. 19.
    Zvonkin, A.K.: A transformation of the phase space of a diffusion process that removes the drift. Mat. Sb.93 (1974). English trans. in Math. USSR Sb.22, 129–149 (1974)Google Scholar
  20. 20.
    Oelschläger, K.: A martingale approach to the law of large numbers for weakly interacting stochastic processes. Ann. Probab.12, 458–479 (1984)Google Scholar
  21. 21.
    Oelschläger, K.: A law of large numbers for modelately interacting diffusion processes. Z. Wahrscheinlichkeitstheor. Verw. Geb.69, 279–322 (1985)Google Scholar
  22. 22.
    Nagasawa, M.: Macroscopic, intermediate, microscopic and mesons. To appear in Lect. Notes Physics. Berlin Heidelberg New York: SpringerGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Masao Nagasawa
    • 1
  • Hiroshi Tanaka
    • 2
  1. 1.Institut für Angewandte Mathematik der Universität ZürichZürichSwitzerland
  2. 2.Department of Mathematics, Faculty of Science and TechnologyKeio UniversityHiyoshi, YokohamaJapan

Personalised recommendations