Molecular and General Genetics MGG

, Volume 111, Issue 4, pp 303–316 | Cite as

Location on the chromosome ofSalmonella typhimurium of genes governing pyrimidine metabolism

  • Christoph F. Beck
  • John L. Ingraham


Genes encoding the enzymes cytidine deaminase (cdd), uridine monophosphate pyrophosphorylase (upp), cytidine triphosphate synthetase (pyrG), and uridine phosphorylase (udp) were located on theSalmonella typhimurium chromosome at 68, 77, 90 and 122 min, respectively. Strains carrying mutations inpyrG must also carry mutations incdd in order for cytidine to be sufficiently stable metabolically to supply the cell's requirement for CTP1.


Enzyme Pyrimidine Triphosphate Monophosphate Uridine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adelberg, E. A., Mandel, M., Chen, G. C. C.: Optimal conditions for mutagenesis by N-methyl-N′-nitro-N-nitrosoguanidine inEscherichia coli K-12. Biochem. biophys. Res. Commun.18, 788–795 (1965).Google Scholar
  2. Brockman, R. W., Davis, T. M., Stubbs, P.: Metabolism of uracil and 5-fluorouracil by drug-sensitive and by drug-resistant bacteria. Biochim. biophys. Acta (Amst.)40, 22–32 (1969).Google Scholar
  3. Clark, D. J., Maaløe, O.: DNA replication and the division cycle inEscherichia coli. J. molec. Biol.23, 99–112 (1967).Google Scholar
  4. Fink, G. R., Roth, J. R.: Histidine regulatory mutants inSalmonella typhimurium. J. molec. Biol.33, 547–557 (1968).Google Scholar
  5. Hershey, A. D., Chan, M.: Independent functions of viral protein and nucleic acid in growth of bacteriophage. J. gen. Physiol.36, 39–56 (1952).Google Scholar
  6. Neuhard, J.: Pyrimidine nucleotide metabolism and pathways of thymidine triphosphate biosynthesis inSalmonella typhimurium. J. Bact.96, 1519–1527 (1968).Google Scholar
  7. —: Mutants ofSalmonella typhimurium requiring cytidine for growth. J. Bact.95, 2431–2433 (1968).Google Scholar
  8. Newell, P. C., Tucker, R. G.: Biosynthesis of the pyrimidine moiety of thiamine. Biochem. J.106, 279–287 (1968).Google Scholar
  9. Norkin, L. C.: Marker specific effects in genetic recombination. J. molec. Biol.51, 633–655 (1970).Google Scholar
  10. Okada, T., Homma, F., Sonohara, H.: Improved method for obtaining thymineless mutants ofEscherichia coli andSalmonella typhimurium. J. Bact.84, 602–603 (1962).Google Scholar
  11. Pittard, J., Walker, E. M.: Conjugation inEscherichia coli. Recombination events in terminal regions of transferred deoxyribonucleic acid. J. Bact.94, 1656–1663 (1967).Google Scholar
  12. Roth, J. R., Antón, D. N., Hartman, P. E.: Histidine regulatory mutants inSalmonella typhimurium. J. molec. Biol.22, 305–323 (1966).Google Scholar
  13. —, Hartman, P. E.: Heterogeneity in P22 transducing particles. Virology27, 297–307 (1965).Google Scholar
  14. Sanderson, K. E.: Current linkage map ofSalmonella typhimurium. Bact. Rev.34, 176–193 (1970).Google Scholar
  15. Smith, H. O., Levine, M.: A phage P22 gene controlling integration of prophage. Virology31, 207–216 (1967).Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • Christoph F. Beck
    • 1
  • John L. Ingraham
    • 1
  1. 1.Department of BacteriologyUniversity of CaliforniaDavis

Personalised recommendations