Tolerance to fluphenazine and supersensitivity to apomorphine in central dopaminergic systems after chronic fluphenazine decanoate treatment

  • S. C. Wheeler
  • R. H. Roth


Fluphenazine decanoate was administered chronically to rats on a schedule for which marked tolerance developed to acute fluphenazine effects on several parameters of dopaminergic neuronal function. DOPAC and HVA levels, indicators of dopaminergic activity, were quantitated in terminal areas of the mesocortical, mesolimbic and nigrostriatal systems. With this fluphenazine regimen tolerance developed not only in the nigrostriatal and mesolimbic but also in the mesocortical dopamine system to the elevation of metabolite levels induced by acute fluphenazine administration. Evidence was obtained that tolerance was functional rather than metabolic and was characterized by a large reduction in the accumulation of metabolites which normally follows a challenge dose of fluphenazine. Other experiments suggested that the results were not due to the effects of chronic fluophenazine on the noradrenergic innervation of the cortex and were not explained by altered catabolism or clearance of the dopamine metabolites. During withdrawal from chronic fluphenazine decanoate treatment supersensitivity to apomorphine developed in the striatum. The time courses of the disappearance of apomorphine supersensitivity and of the reversal of tolerance to a fluphenazine challenge were different.

Key words

Dopamine Fluphenazine decanoate Apomorphine Tolerance Supersensitivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bacopoulos, N. G., Bustos, G., Redmond, D. E., Baulu, J., Roth, R. H.: Regional sensitivity of primate brain dopaminergic neurons to haloperidol: Alterations following chronic treatment. Brain Res.157, 396–401 (1978)Google Scholar
  2. Bacopoulos, N. G., Hattox, S. E., Roth, R. H.: 3,4-Dihydroxyphenylacetic acid and homovanillic acid in rat plasma: Possible indicators of central dopaminergic activity. Eur. J. Pharmacol.56, 225–236 (1979)Google Scholar
  3. Baldessarini, R. J.: Schizophrenia. New Engl. J. Med.297, 988–995 (1977)Google Scholar
  4. Berger, B., Thierry, A. M., Tassin, J. P., Moyne, M. A.: Dopaminergic innervation of the rat prefrontal cortex: A fluorescence histochemical study. Brain Res.106, 133–145 (1976)Google Scholar
  5. Bowers, M. B., Rozitis, A.: Brain homovanillic acid: Regional changes over time with antipsychotic drugs. Eur. J. Pharmacol.39, 109–115 (1976)Google Scholar
  6. Bunney, B. S., Aghajanian, G. K., Roth, R. H.: Comparison of effects ofl-Dopa, amphetamine and apomorphine on firing rate of rat dopaminergic neurons. Nature New Biol245, 123–125 (1973)Google Scholar
  7. Bunney, B. S., Walters, J. R., Roth, R. H, Aghajanian, G. K.: Dopaminergic neurons: Effect of antipsychotic drugs and amphetamine on single cell activity. J. Pharmacol. Exp. Ther.185, 560–571 (1973b)Google Scholar
  8. Burt, D. R., Creese, I., Snyder, S. H.: Properties of [3H]-haloperidol and [3H]-dopamine binding associated with dopamine receptors in calf brain membranes. Mol. Pharmacol.12, 800–812 (1976)Google Scholar
  9. Carlsson, A.: Does dopamine play a role in schizophrenia? Psychol. Med.7, 583–597 (1977)Google Scholar
  10. Christensen, A. V., Fjalland, B., Møller-Nielsen, I.: On the supersensitivity of dopamine receptors, induced by neuroleptics. Psychopharmacology48, 1–6 (1976)Google Scholar
  11. Elchisak, M. A., Maas, J. W., Roth, R. H.: Dihydroxyphenylacetic acid conjugate: Natural occurrence and demonstration of probenecid-induced accumulation in rat striatum, olfactory tubercles and frontal cortex. Eur. J. Pharmacol.41, 369–378 (1977)Google Scholar
  12. Freedman, R., Hoffer, B. J.: Phenothiazine antagonism of the noradrenergic inhibition of cerebellar Purkinje neurons. J. Neurobiol.6, 277–288 (1975)Google Scholar
  13. Gallager, D. W., Pert, A., Bunney, W. E., Jr.: Haloperidol-induced presynaptic dopamine supersensitivity is blocked by chronic lithium. Nature273, 309–312 (1978)Google Scholar
  14. Gianutsos, G., Hynes, M. D., Lal, H.: Enhancement of apomorphine-induced inhibition of striatal dopamine-turnover following chronic haloperidol. Biochem. Pharmacol.24, 581–582 (1975)Google Scholar
  15. Glowinski, J., Iversen, L. L.: Regional studies of catecholamines in the rat brain — I. J. Neurochem.13, 655–669 (1966)Google Scholar
  16. Goldstein, A., Aronow, L., Kalman, S.: Principles of drug action: The basis of pharmacology, New York: John Wiley and Sons 1974Google Scholar
  17. Hyttel, J.: Long-term effects of teflutixol on the synthesis and endogenous levels of mouse brain catecholamines. J. Neurochem.25, 681–686 (1975)Google Scholar
  18. Hyttel, J., Møller-Nielsen, I.: Changes in catecholamine concentrations and synthesis rate in mouse brain during the “super-sensitivity” phase after treatment with neuroleptic drugs. J. Neurochem.27, 313–315 (1976)Google Scholar
  19. Kalant, H., LcBlanc, A. E., Gibbins, R. J.: Tolerance to, and dependence on some non-opiate psychotropic drugs. Pharmacol. Rev.23, 135–191 (1971)Google Scholar
  20. Kehr, W., Carlsson, A., Lindqvist, M.: Biochemical aspects of dopamine agonists. In: Advances in neurology, Vol. 9 (D. B. Calne, T. N. Chase, A. Barbeau, eds), pp. 185–195. New York: Raven Press 1975Google Scholar
  21. Klawans, H. L., Jr.: The pharmacology of extrapyramidal movement disorders. Basel: S. Karger 1973Google Scholar
  22. Klawans, H., Ilahi, M. M., Shenker, D.: Theoretical implications of the use ofl-DOPA in Parkinsonism. Acta Neurol. Scand.46, 409–441 (1970)Google Scholar
  23. König, J. F. R., Klippel, R. A.: The rat brain: A stereotaxic atlas. New York: Robert F. Krieger Publishing Co., Inc. 1970Google Scholar
  24. Laduron, P., De Bie, K., Leysen, J.: Specific effect of haloperidol on dopamine turnover in the frontal cortex. Naunyn-Schmiedeberg's Arch. Pharmacol.296, 183–185 (1977)Google Scholar
  25. Lahti, R. A., McAllister, B., Wozniak, J.: Apomorphine antagonism of the elevation of homovanillic acid induced by antipsychotic drugs. Life Sci.11, 605–613 (1972)Google Scholar
  26. Lindvall, O., Björklund, A., Divac, I.: Organization of catecholamine neurons projecting to the frontal cortex in the rat. Brain Res.142, 1–24 (1978)Google Scholar
  27. Martres, M. P., Costentin, J., Baudry, M., Marcais, H., Protais, P., Schwartz, J. C.: Long-term changes in the sensitivity of pre- and postsynaptic dopamine receptors in mouse striatum evidenced by behavioral and biochemical studies. Brain Res.136, 319–337 (1977)Google Scholar
  28. Meltzer, H. Y., Stahl, S. M.: The dopamine hypothesis of schizophrenia: A review. Schizophr. Bull.2, 19–76 (1976)Google Scholar
  29. Møller-Nielsen, I. Von, Christensen, A. V., Hyttel, J.: Rezeptor-blockade und Rezeptorhypersensibilität nach Behandlung mit Neuroleptika. Arzneim. Forsch.26, 1090–1092 (1976)Google Scholar
  30. Moore, R. Y., Bloom, F. E.: Central catecholamine neuron systems: Anatomy and physiology of the dopamine system. Ann. Rev. Neurosci.1, 129–169 (1978)Google Scholar
  31. Nowycky, Martha C.: Central dopaminergic neurons: Studies of neuronal activity and transmitter dynamics after chronic drug treatments. Dissertation, Yale University 1976Google Scholar
  32. Nowycky, M. C., Roth, R. H.: Presynaptic dopamine receptors. Development of supersensitivity following treatment with fluphenazine decanoate. Naunyn-Schmiedeberg's Arch. Pharmacol.300, 247–254 (1977)Google Scholar
  33. Nybäck, H., Borzecki, Z., Sedvall, G.: Accumulation and disappearance of catecholamines formed from tyrosine-14C in mouse brain; effect of some psychotropic drugs. Eur. J. Pharmacol.41, 395–403 (1968)Google Scholar
  34. Ohman, R., Larrson, M., Nilsson, I. M., Engel, J., Carlsson, A.: Neurometabolic and behavioral, effects of haloperidol in relation to drug levels in serum and brain. Naunyn-Schmiedeberg's Arch. Pharmacol.299, 105–114 (1977)Google Scholar
  35. Randrup, A., Munkvad, I.: Behavioral stereotypies induced by pharmacological agents. Pharmakopsychiatr. und Neuropsychopharmakol.1, 18–26 (1968)Google Scholar
  36. Roth, R. H., Murrin, L. C., Walters, J. R.: Central dopaminergic neurons: Effects of alterations in impulse flow on the accumulation of dihydroxyphenylacetic acid. Eur. J. Pharmacol.36, 163–171 (1976)Google Scholar
  37. Scatton, B.: Differential regional development of tolerance to increases in dopamine turnover upon repeated neuroleptic administration. Eur. J. Pharmacol.46, 363–369 (1977a)Google Scholar
  38. Scatton, B., Glowinski, J., Julou, L.: Dopamine metabolism in the mesocortical and mesolimbic dopaminergic systems after single or repeated administration of neuroleptics. Brain Res.109, 184–189 (1976)Google Scholar
  39. Scatton, B., Boireau, A., Garret, C., Glowinski, J., Julou, L.: Action of the palmitic ester of pipotiazine on dopamine metabolism in the nigro-striatal, meso-limbic and meso-cortical systems. Naunyn-Schmiedeberg's Arch. Pharmacol.296, 169–175 (1977b)Google Scholar
  40. Skirboll, L. R., Bunney, B. S.: The effects of acute and chronic haloperidol treatment on spontaneously firing neurons in the caudate nucleus of the rat. Life Sci.25, 1419–1434 (1979)Google Scholar
  41. Sokal, R. R., Rohlf, J. F.: Biometry. San Francisco: W. H. Freman and Co. 1969Google Scholar
  42. Swahn, C.-C., Wiesel, F. A.: Determination of conjugated monoamine metabolites in brain tissue. J. Neural Transm.39, 281–290 (1976)Google Scholar
  43. Tarsy, D., Baldessarini, R. J.: Behavioral supersensitivity to apomorphine following chronic treatment with drugs which interfere with the synaptic function of catecholamines. Neuropharmacology13, 927–940 (1974)Google Scholar
  44. Ungerstedt, U.: Stereotaxic mapping of the monoamine pathways in the brain. Acta Physiol. Scand., Suppl.367, 1–48 (1971)Google Scholar
  45. Voith, K.: Comparison of behavioral supersensitivity to apomorphine after fluphenazine dihydrochloride and fluphenazine decanoate treatment in rats. Prog. Neuro-Psychopharmacol.1, 289–295 (1977)Google Scholar
  46. Waldmeier, P. C., Maitre, L.: On the relevance of preferential increases of mesolimbic versus striatal dopamine turnover for the prediction of antipsychotic activity of psychotropic drugs. J. Neurochem.27, 589–597 (1976)Google Scholar
  47. Walters, J. R., Roth, R. H.: Dopaminergic neurons: An in vivo system for measuring drug interactions with presynaptic receptors. Naunyn-Schmiedeberg's Arch. Pharmacol.296, 4–14 (1976)Google Scholar
  48. Westerink, B. H. C., Korf, J.: Turnover of acid dopamine metabolites in striatal and mesolimic tissue of the rat brain. Eur. J. Pharmacol.37, 249–255 (1976)Google Scholar
  49. Yarbrough, G. C.: Supersensitivity of caudate neurones after repeated administration of haloperidol. Eur. J. Pharmacol.31, 367–369 (1975)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • S. C. Wheeler
    • 1
  • R. H. Roth
    • 1
  1. 1.Departments of Pharmacology and PsychiatryYale University School of MedicineNew HavenUSA

Personalised recommendations