Skip to main content
Log in

Fatigue-crack propagation behavior in monolithic and composite ceramics and intermetallics

  • Published:
Materials Science Aims and scope

Abstract

We study microstructural mechanisms of fatigue crack growth in advanced monolithic and composite ceramics and intermetallics. Much attention is devoted to the contribution of cycling loading to the hindrance of mechanisms that lead to a considerable increase in toughness (crack-tip shielding) of these materials. For example, in intermetallics with a ductile phase, such as β-TiNb-reinforced γ-TiAl or Nb-reinforced Nb3Al, a significant increase in toughness caused by the presence of uncracked ductile phase inside a crack is retarded under cyclic loading because ductile particles immediately fail by fatigue. Similarly, in monolithic ceramics, e.g., in alumina (aluminum oxide) or silicon nitride, the significant plasticization appearing under monotonic loading is greatly diminished under cyclic loading due to gradual wear at the grain-matrix interface. In fact, the nature of fatigue in such low-plasticity materials differs essentially from the well-known mechanisms of fatigue in metals and is governed, first of all, by a decrease in shielding, which depends on the loading cycle and time. The susceptibility of intermetallics and ceramics to fatigue degradation under cyclic loading affects seriously the possibility of structural use of these materials in practice. In particular, in this case, it is difficult to apply strength calculation methods that take into account the presence of defects and to implement life-prediction procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Evans,J. Am. Ceram. Soc. 73, 187–206 (1990).

    Google Scholar 

  2. R. O. Ritchie,Mater. Sci. Eng. A103, 15–28 (1988).

    Google Scholar 

  3. R. H. Dauskardt, W. Yu, and R. O. Ritchie,J. Am. Ceram. Soc. 70, 248–252 (1987).

    Google Scholar 

  4. M. V. Swain and V. Zelizko, in: S. Somioya, N. Yamamoto, and H. Hanagida (editors),Advances in Ceramics, 24B, Science and Technology of Zirconia III American Ceramic Society, Westerville (1988), pp. 595–606.

    Google Scholar 

  5. L. Ewart and S. Suresh,J. Mater. Sci. 22, 1173–1192 (1987).

    Google Scholar 

  6. R. H. Dauskardt, D. B. Marshall, and R. O. Ritchie,J. Am. Ceram. Soc. 73, 893–903 (1990).

    Google Scholar 

  7. R. H. Dauskardt, W. C. Carter, D. K. Veirs, and R. O. Ritchie,Acta Met. Mater. 38, 2327–2336 (1990).

    Google Scholar 

  8. A. A. Steffen, R. H. Dauskardt, and R. O. Ritchie,J. Am. Ceram. Soc. 74, 1259–1268 (1991).

    Google Scholar 

  9. R. O. Ritchie, R. H. Dauskardt, W. Yu, and A. M. Brendzel,J. Biomed. Mater. Res. 24, 189–206 (1990).

    Google Scholar 

  10. R. H. Dauskardt, M. R. James, J. R. Porter, and R. O. Ritchie,J. Am. Ceram. Soc. 75, 759–771 (1992).

    Google Scholar 

  11. P. C. Paris and F. Erdogan,Trans. ASME: J. Bas. Eng. 85, 528–534 (1963).

    Google Scholar 

  12. S.-Y. Liu and I.-W. Chen,J. Am. Ceram. Soc. 75, 1197–1216 (1991).

    Google Scholar 

  13. D. C. Cardona and C. J. Beevers, in: H. Kitagawa and T. Tanaka (editors),Fatigue '90. Proceedings of 4th International Conference on Fatigue and Fatigue Thresholds, Vol. 2, Mat. Comp. Eng. Publ. Ltd., Edgbaston, UK (1990), pp. 1023–1029.

    Google Scholar 

  14. S. Suresh and R. O. Ritchie,Int. Metals Rev. 29, 445–476 (1984).

    Google Scholar 

  15. L. X. Han and S. Suresh,J. Am. Ceram. Soc. 72, 1233–1238 (1989).

    Google Scholar 

  16. C.-K. J. Lin and D. F. Socie,J. Am. Ceram. Soc. 74, 1511–1518 (1991).

    Google Scholar 

  17. K. Walker, ASTM STP 738, Amer. Soc. Test. Mater., Philadelphia (1970).

  18. R. H. Van Stone,Mater. Sci. Eng. A103, 49–61 (1988).

    Google Scholar 

  19. W. Elber, in:Damage Tolerance in Aircraft Structures, ASTM STP 486, Amer. Soc. Test. Mater., Philadelphia (1971).

    Google Scholar 

  20. S. Suresh and R. O. Ritchie, in: D. L. Davidson and R. O. Ritchie (editors),Fatigue Crack Growth Threshold Concepts The Metallurgical Society of the American Institute of Mining, Metallurgical and Petroleum Engineers, Warrendale (1984), pp. 227–261.

    Google Scholar 

  21. R. H. J. Hannink and M. V. Swain,J. Aust. Ceram. Soc. 18, 53–62 (1982).

    Google Scholar 

  22. R. M. McMeeking and A. G. Evans,J. Am. Ceram. Soc. 63, 242–246 (1982).

    Google Scholar 

  23. B. Budiansky, J. W. Hutchinson, and J. C. Lambropoulos,Int. J. Solids Struct. 19, 337–355 (1983).

    Google Scholar 

  24. R. H. Dauskardt, D. K. Veirs, and R. O. Ritchie,J. Am. Ceram. Soc. 72, 1124–1130 (1989).

    Google Scholar 

  25. D. B. Marshall, M. C. Shaw, R. H. Dauskardt, R. O. Ritchie, M. Readey, and A. H. Heuer,J. Am. Ceram. Soc. 73, 2659–2666 (1990).

    Google Scholar 

  26. R. H. Dauskardt, R. O. Ritchie, J. K. Takemoto, and A. M. Brendzel,J. Biomed. Mater. Research.,27 (1993) (in review).

  27. R. W. Hertzberg,Deformation and Fracture Mechanics of Engineering Materials, 3rd ed., New York (1989).

  28. T. Fett, G. Himsolt, and D. Munz,Adv. Ceram. Mater. 1, 179–184 (1986).

    Google Scholar 

  29. R. O. Ritchie and R. H. Dauskardt,J. Ceram. Soc. Japan 99, 1049–1062 (1991).

    Google Scholar 

  30. D. L. Davidson, J. B. Campbell, and J. Lankford,Acta Met. Mater. 39, 1319–1330 (1991).

    Google Scholar 

  31. S. Lathabai, J. Rödel, and B. R. Lawn,J. Am. Ceram. Soc. 74, 1340–1348 (1991).

    Google Scholar 

  32. R. H. Dauskardt,Acta Met. Mater.,41 (1993) (in press).

  33. F. Guiu, M. Li, and M. J. Reece,J. Am. Ceram. Soc.,76 (1993) (in press).

  34. S. Okawara, H. Kisimoto, A. Ueno, and H. Kawamoto,J. Am. Ceram. Soc.,76 (1993) (in press).

  35. X.-Z. Hu and Y.-W. Mai,J. Am. Ceram. Soc.,76 (1993) (in press).

  36. P. L. Swanson, C. J. Fairbanks, B. R. Lawn, Y. W. Mai, and B. J. Hockey,J. Am. Ceram. Soc. 70, 279–289 (1987).

    Google Scholar 

  37. R. W. Steinbrech and O. Schmenkel,J. Am. Ceram. Soc. 71, C271-C273 (1988).

    Google Scholar 

  38. G. Vekinis, M. F. Ashby, and P. W. R. Beaumont,Acta Met. Mater. 38, 1151–1162 (1990).

    Google Scholar 

  39. T. E. Fischer, M. P. Anderson, S. Jahanmir, and R. Salher, in: K. C. Ludema (editor),Wear of Materials, Vol. 1, Trans. ASME (1987), pp. 257–266.

  40. C. T. Liu, H. I. Taub, N. S. Stoloff, and C. C. Koch, in:High-Temperature Ordered Intermetallic Alloys. III, MRS Symposium Proceedings, Vol. 133, Pittsburgh (1989).

  41. S. H. Whang, C. T. Liu, D. P. Pope, and J. O. Stiegler,High-Temperature Aluminides and Intermetallics TMS-AIME, Warrendale (1990).

    Google Scholar 

  42. D. L. Anton, P. L. Martin, D. B. Miracle, and R. M. McMeeking, in:Intermetallic-Matrix Composites, MRS Symposium Proceedings, Vol. 194, Pittsburgh (1990).

  43. K. T. Venkateswara Rao, G. R. Odette, and R. O. Ritchie,Acta Met. Mater. 49, 353–361 (1992).

    Google Scholar 

  44. B. N. Cox, in: R. O. Ritchie, R. H. Dauskardt, and B. N. Cox (editors),Fatigue of Advanced Materials MCEP Ltd., Edgbaston-Birmingham (1991), pp. 53–65.

    Google Scholar 

  45. B. Budiansky, J. Hutchinson, and A. G. Evans,J. Mech. Phys. Solids. 34, 167–189 (1986).

    Google Scholar 

  46. B. N. Cox and D. B. Marshall,Fat. Fract. Eng. Mater. Struct. 14, 847–861 (1991).

    Google Scholar 

  47. C. T. Liu, J. O. Stiegler, and F. H. Froes,Metals Handbook. Vol. 2 (1991), p. 913.

    Google Scholar 

  48. R. L. Fleischer, D. M. Dimiduk, and H. A. Lipsitt,Ann. Rev. Mater. Sci. 19, 231 (1989).

    Google Scholar 

  49. Y. W. Kim and D. M. Dimiduk,J. Met. 43, No.8, 40–47 (1991).

    Google Scholar 

  50. K. S. Chan and Y. W. Kim,Met. Trans. A 23A, 1663–1677 (1992).

    Google Scholar 

  51. H. E. Deve, A. G. Evans, and D. S. Shih,Acta Met. Mater. 40, 1259–1266 (1992).

    Google Scholar 

  52. C. K. Elliott, G. R. Odette, G. E. Lucas, and J. W. Sheckherd, in: F. D. Lemkey, A. G. Evans, S. G. Fishman, and J. R. Strive (editors),High-Temperature/High-Performance Composites: MRS Symp. Proc., Vol. 120, Pittsburgh (1988), pp. 95–101.

  53. H. E. Deve, A. G. Evans, G. R. Odette, R. Mehrabian, M. L. Emiliani, and R. J. Hecht,Acta Met. Mater. 38, 1491–1502 (1990).

    Google Scholar 

  54. G. R. Odette, B. L. Chao, J. W. Sheckherd, and G. E. Lucas,Acta Met. Mater. 40, 2381–2389 (1992).

    Google Scholar 

  55. M. F. Ashby, F. J. Blunt, and M. Bannister,Acta Met. 37, 1847–1857 (1989).

    Google Scholar 

  56. K. T. Venkateswara Rao and R. O. Ritchie, in: D. Miracle, J. Graves, and D. Anton (editors),Intermetallic-Matrix Composites. II: MRS Symp. Proc., Vol. 273, Pittsburgh (1992), pp. 127–134.

  57. K. T. Venkateswara Rao, G. R. Odette, and R. O. Ritchie,Acta Met. Mater.,41 (1993) (in review).

  58. J. J. Stephens,J. Met. 42:8, No.8, 22–23 (1990).

    Google Scholar 

  59. C. T. Liu and J. O. Stiegler,Science 226, 636 (1984).

    Google Scholar 

  60. L. Murugesh, K. T. Venkateswara Rao, L. C. DeJonghe, and R. O. Ritchie, in: D. Miracle, J. Graves, and D. Anton (editors),Intermetallic Matrix Composites. II: MRS Symp. Proc., Vol. 273, Pittsburgh (1992), pp. 433–438.

  61. L. Murugesh, K. T. Venkateswara Rao, and R. O. Ritchie,Scripta Met. Mater.,27 (1993) (in press).

  62. K. T. Venkateswara Rao, W. O. Soboyejo, and R. O. Ritchie,Met. Trans. A 23A, 2249–2257 (1992).

    Google Scholar 

  63. W. O. Soboyejo, K. T. Venkateswara Rao, S. M. L. Sastry, and R. O. Ritchie,Met. Trans. A 24A, 585–600 (1993).

    Google Scholar 

  64. J.-K. Shang, J. L. Tzou, and R. O. Ritchie,Met. Trans. A 18A, 1613–1627 (1987).

    Google Scholar 

  65. J. M. Larsen, T. Nicholas, A. W. Thompson, and J. C. Williams, in: R. O. Ritchie and J. Lankford (editors),Small Fatigue Cracks TMS-AIME, Warrendale (1986), pp. 499–512.

    Google Scholar 

Download references

Authors

Additional information

Center for Advanced Materials, Lawrence Berkeley Laboratory, University of California, USA. Published in Fiziko-Khimicheskaya Mekhanika Materialov, Vol. 30, No. 3, pp. 7–35, May–June, 1994.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritchie, R.O., Dauskardt, R.H. & Venkateswara Rao, K.T. Fatigue-crack propagation behavior in monolithic and composite ceramics and intermetallics. Mater Sci 30, 277–300 (1995). https://doi.org/10.1007/BF00569681

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00569681

Keywords

Navigation