Advertisement

Biochemical Genetics

, Volume 30, Issue 7–8, pp 361–370 | Cite as

Restriction fragment length variants in the marsupialSminthopsis crassicaudata

  • Rory Hope
  • Henry Bennett
  • Clive Chesson
  • Steven Cooper
Article

Abstract

A fully pedigreed colony of the dasyurid marsupialSminthopsis crassicaudata has provided material for establishing two panels of DNA samples: a broad-based test panel and a two-generation family panel. These have been used to search for genetic markers in the form of restriction fragment length variants. The molecular probes—pSG-2H, a region of theS. crassicaudata embryonic β-globin gene; pB8.BS, a region of the human ubiquitin gene, and p3-21a1:1, a region of the processed pseudogene of phosphoglycerate kinase-1 of the macropodid marsupialMacropus robustus—were hybridized to Southern blots ofEcoR1-digested DNA from the panels. Analysis of these blots when probed with pSG-2H provided evidence of two alleles segregating at a singleEcoR1 site. Analysis of the same blots when probed with pB8.BS suggested allelic variation at two closely linkedEcoR1 sites. Probing the blots with p3-21a1:1 produced a complex pattern of bands resembling DNA fingerprints. The presence of a 12.3-kb band was found to conform to a simple autosomal dominant mode of inheritance. Analysis of the family data, for each probe, revealed no significant departure from Mendelian inheritance. This work has provided additional genetic markers that will enhance the use ofS. crassicaudata as a model marsupial species and has demonstrated that a high level of genetic variability has been maintained in the marsupial colony.

Key words

Sminthopsis crassicaudata marsupial pedigreed colony DNA restriction fragment length variants Mendelian inheritance mammalian evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adra, C. N., Ellis, N. A., and McBurney, M. W. (1988). The family of mouse phosphoglycerate kinase genes and pseudogenes.Somat. Cell Mol. Genet. 1469.Google Scholar
  2. Baker, R. T., and Board, P. G. (1987). The human ubiquitin gene family: Structure of a gene and pseudogene from the Ub B sub-family.Nucl. Acid Res. 15443.Google Scholar
  3. Bennett, J. H., Smith, M. J., Hope, R. M., and Chesson, C. M. (1982). Fat-tailed dunnartSminthopsis crassicaudata: Establishment and maintenance of a laboratory colony. In Evans, D. D. (ed.),The Management of Australian Mammals in Captivity Zoological Board of Victoria, Melbourne, pp. 38–44.Google Scholar
  4. Bennett, J. H., Hayman, D. L., and Hope, R. M. (1986). Novel sex differences in linkage values and meiotic chromosome behaviour in a marsupial.Nature (Lond.) 32359.Google Scholar
  5. Bennett, J. H., Breed, W. G., Hayman, D. L., and Hope, R. M. (1990). Reproductive and genetical studies with a laboratory colony of the dasyurid marsupialSminthopsis crassicaudata.Aust. J. Zool. 37207.Google Scholar
  6. Breed, W. G., and Leigh, C. M. (1988). Morphological observations on sperm-egg interactions duringin vivo fertilization in the dasyurid marsupialSminthopsis crassicaudata.Gamete Res. 19131.Google Scholar
  7. Church, G. M., and Gilbert, W. (1984). Genomic sequencing.Proc. Natl. Acad. Sci. 811991.Google Scholar
  8. Davies, R. W., Botstein, D., and Roth, J. R. (1980).A Manual for Genetic Engineering. Advanced Bacterial Genetics Cold Spring Harbor Laboratories, Cold Spring Harbor, NY.Google Scholar
  9. Hope, R. M., Bennett, J. H., Chesson, C. M., and Adams, M. (1984). Genetic variation in red cell adenosine deaminase and glucosephosphate isomerase in a laboratory colony of the marsupialSminthopsis crassicaudata (Gould).Biochem. Genet. 22221.Google Scholar
  10. Hope, R. M., Bennett, J. H., and Chesson, C. M. (1986). Genetic variation in natural and laboratory populations of the marsupialSminthopsis crassicaudata.Biochem. Genet. 24597.Google Scholar
  11. Kaslow, D. C., Migeon, B. R., Persico, M. G., Zollo, M., VandeBerg, J. L., and Samollow, P. B. (1987). Molecular studies of marsupial X chromosomes reveal limited sequence homology of mammalian X-linked genes.Genomics 119.Google Scholar
  12. Martin, P. G. (1965). The potentialities of the fat-tailed marsupial mouse,Sminthopsis crassicaudata (Gould), as a laboratory animal.Aust. J. Zool. 13559.Google Scholar
  13. Michelson, A. M., Bruns, G. A. P., Morton, C. C., and Orkin, S. H. (1985). The human phosphoglycerate kinase multigene family: HLA-associated sequences and an X-linked locus containing a processed pseudogene and its functional counterpart.J. Biol. Chem. 2606982.Google Scholar
  14. Reed, K. C. (1987). Zeta-Probe Blotting Membrane: Instructions for Use in Nucleic Acid Hybridizations, BioRad, Australia.Google Scholar
  15. Sharman, G. B., Hughes, R. L., and Cooper, D. W. (1990). The chromosomal basis of sex determination in marsupials.Aust. J. Zool. 37451.Google Scholar
  16. Shaw, G., Renfree, M. B., and Short, R. V. (1990). Primary genetic control of sexual differentiation in marsupials.Aust. J. Zool. 37443.Google Scholar
  17. Smith, M. J., Bennett, J. H., and Chesson, C. M. (1978). Photoperiod and some other factors affecting reproduction in femaleSminthopsis crassicaudata (Gould) (Marsupialia: Dasyuridae) in captivity.Aust. J. Zool. 26449.Google Scholar
  18. van Daal, A. M., Cooper, D. W., and Molloy, P. L. (1989). A marsupial phosphoglycerate kinase (PGK) processes pseudogene.Genomics 5264.Google Scholar
  19. Westneat, D. F., Noen, W. A., Reeve, H. K., and Aquadro, C. F. (1988). Improved hybridization conditions for DNA “fingerprints” probed with M13.Nucl. Acid Res. 164161.Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • Rory Hope
    • 1
  • Henry Bennett
    • 1
  • Clive Chesson
    • 1
  • Steven Cooper
    • 1
  1. 1.Department of GeneticsUniversity of AdelaideAdelaideAustralia

Personalised recommendations