Marine Biology

, Volume 90, Issue 2, pp 307–315 | Cite as

Activité biologique en domaine profond: transformations biochimiquesin situ de composés organiques marqués au carbone-14 à l'interface eau-sédiment par 2000 m de profondeur dans le golfe de Gascogne

  • G. Cahet
  • M. Sibuet
Article

Abstract

In June 1983,in situ water-sediment interface experiments were conducted with the submersible “Cyana” at 2 000 m depth in the Bay of Biscay. Dissolved or particulate14C-labelled organic compound was injected into a compartment of a box-corer specifically adapted for use with the submersible. After incubation, the biochemical reactions were stopped by addition of Formalin. In the laboratory, the pathways of the labelled molecules in the various extracts were followed by means of chemical and granulometric fractionation and isolation of meiofauna. Various experiments run at 1 atm and atin situ pressures, for incubation times of between 3 and 144 h, revealedin situ biochemical transformation. After recovery of the samples, activity at 1 atm was low, with only 4% of the radioactivity being recovered in the macromolecules against 84% for thein situ experiments. These results comprise new evidence of the existence of a rapid biochemical transformation at great depth in the ocean and therefore of the activity of the microflora, microfauna and meiofauna which are living in the superficial sediment.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Litérature citée

  1. Ansbaek, J. and T. Blackburn: A method for the analysis of acetate turnover in a coastal marine sediment. Microb. Ecol.5, 253–264 (1980)Google Scholar
  2. Cahet, G., A. Bianchi et C. Ralijaona: Hétérotrophie potentielle des sédiments marins profonds. Effet de la pression (traceur=14C glucose). Colloques natn. Cent. natn. Rech. scient. (Bact. mar., Marseille) 225–229 (1984)Google Scholar
  3. Cahet, G. et D. Delille: Disponibilité du carbone organique élaboré par voie photo-chémo et hétérotrophe dans divers sédiments littoraux. Colloques natn. Cent. natn. Rech. scient. (Bact. mar., Marseille) 205–211 (1984)Google Scholar
  4. Cahet, G., F. Gadel, R. Martin et M. Bensoussan: Remarques sur la réponse de sédiments à l'addition de molécules organiques marquées avec mise sous pression.In: Géochimie organique des sédiments marins profonds, Orgon IV, pp 61–69. Paris: CNRS 1981Google Scholar
  5. Cuhel, R. L., C. D. Taylor and H. W. Jannasch: Assimilatory sulfur metabolism in marine microorganisms: sulfur metabolism, growth and protein synthesis ofPseudomonas halodurans andAlteromonas luteo-violaceus during sulfate limitation. Archs Microbiol.130, 1–7 (1981)Google Scholar
  6. Deming, J.: Ecology of barophylic deep-sea bacteria, 143 pp, PhD thesis, University of Maryland 1981Google Scholar
  7. Jannasch, H. W.: Microbial turnover of organic matter in the deep-sea. BioSci.29, 228–232 (1979)Google Scholar
  8. Jannasch, H. W., R. L. Cuhel, C. O. Wirsen and C. D. Taylor: An approach forin situ studies of deep-sea amphipods and their microbial gut flora. Deep-Sea Res.27, 867–872 (1980)Google Scholar
  9. Jannasch, H. W., K. Eimhjellen, C. O. Wirsen and A. Farmanfarmaian: Microbial degradation of organic matter in the deep-sea. Science, N.Y.171, 672–675 (1971)Google Scholar
  10. Jannasch, H. W. and C. O. Wirsen: Deep-sea microorganisms:in situ response to nutrient enrichment. Science, N.Y.180, 641–643 (1973)Google Scholar
  11. Jannasch, H. W. and C. O. Wirsen: Microbiology of the deep-sea.In: Deep-sea biology, pp 231–259. Ed. by G. Rowe. London: Wiley Interscience 1983Google Scholar
  12. Morita, R. Y.: Survival of bacteria in cold and moderate hydrostatic pressure environments with special reference to psychophilic and barophilic bacteria.In: The survival of vegetative microbes, pp 279–298. Ed. by T. Gray and J. R. Postgate. New York: Cambridge University Press 1976Google Scholar
  13. Schwarz, J. R., A. A. Yayanos and R. R. Colwell: Metabolic activity of the intestinal microflora of a deep-sea invertebrate. Appl. envirl Microbiol.31, 46–48 (1976)Google Scholar
  14. Seki, H., E. Wada, I. Koike and A. Hattori: Evidence of high organotrophic potentiality of bacteria in the deep ocean Mar. Biol.26, 1–4 (1974)Google Scholar
  15. Sibuet, M.: Les invertébrés détritivores dans l'écosystème abyssal. Sélection de la nourriture et régime alimentaire chez les holothuries. Océanis10, 623–641 (1984)Google Scholar
  16. Sibuet, M., A. Khripounoff, J. Deming, R. Colwell and A. Dinet: Modification of the gut contents in the digestive tract of abyssal holothurians. In: Proceedings of the International Conference on Echinoderms, Tampa Bay, pp 421–428. Ed. by J. M. Lawrence. Rotterdam: A. A. Balkema 1982Google Scholar
  17. Wada, E., I. Koike and A. Hattori: Nitrate metabolism in abyssal waters. Mar. Biol.29, 119–124 (1975)Google Scholar
  18. Wirsen, C. O. and H. W. Jannasch: Decomposition of solid organic materials in the deep-sea. Envir. Sci. Technol.10, 880–886 (1976)Google Scholar
  19. Wirsen, C. O. and H. W. Jannasch:In-situ studies on deep-sea amphipods and their intestinal microflora. Mar. Biol.78, 69–73 (1983)Google Scholar
  20. Yayanos, A. A., A. S. Dietz and R. Van Boxtel: Isolation of a deep-sea barophilic bacterium and some of its growth characteristics. Science, N. Y.205, 808–810 (1979)Google Scholar
  21. Zobell, C. E. and F. H. Johnson: The influence of hydrostatic pressure on the growth and viability of terrestrial and marine bacteria. J. Bact.57, 179–189 (1949)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • G. Cahet
    • 1
  • M. Sibuet
    • 2
  1. 1.Laboratoire AragoUniversité Pierre et Marie CurieBanyuls sur merFrance
  2. 2.Centre de BrestIFREMER (Institut Français pour l'Exploitation de la Mer)Brest CédexFrance

Personalised recommendations