Marine Biology

, Volume 90, Issue 2, pp 191–195 | Cite as

Self- and cross-fertilization in scleractinian corals

  • A. J. Heyward
  • R. C. Babcock


The mating patterns of four species of hermaphroditic scleractinian coral were investigated in November 1984 at Orpheus Island on the Great Barrier Reef, Australia. Each of the species shed eggs and sperm into the water, with subsequent external development of larvae. Studies of gamete viability indicated that cross-fertilizations were possible until at least 6 h after spawning.Montipora digitata cross-fertilized exclusively,Acropora tenuis, Goniastrea aspera andG. favulus were capable of self-fertilization, but to varying extents. In all species, cross-fertilization was the dominant mating pattern.


Great Barrier Reef Scleractinian Coral Mating Pattern Dominant Mating External Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Babcock, R. C.: The biology ofGoniastrea aspera in the Townsville region, 111 pp. Thesis, James Cook University of North Queensland 1980Google Scholar
  2. Babcock, R. C.: Reproduction and distribution of two species ofGoniastrea (Scleractinia) from the Great Barrier Reef Province. Coral Reefs2, 187–195 (1984)Google Scholar
  3. Barnes, H. and M. Barnes: Further observations on self-fertilization inCthamalus sp. Ecology39, p. 500 (1958)Google Scholar
  4. Collins, J. D. and T. A. Walker: A drift card study of the Great Barrier Reef. Final Rep. Gt Barrier Reef mar. Park Auth.Feb., 1985, 1–240 (1985)Google Scholar
  5. Fadlallah, Y. H. and J. H. Pearse: Sexual reproduction in solitary corals: synchronous gametogenesis and broadcast spawning inParacyathus stearnsii. Mar. Biol.71, 233–239 (1982)Google Scholar
  6. Gee, J. M. and G. Brinley Williams: Self-and cross-fertilization inSpirorbis borealis andS. pagenstecheri. J. mar. biol. Ass. U.K.45, 275–285 (1965)Google Scholar
  7. Harriott, V. J.: Reproductive ecology of four scleractinian species at Lizard Island, Great Barrier Reef. Coral Reefs2, 9–18 (1983)Google Scholar
  8. Harrison, P. L., R. C. Babcock, G. D. Bull, J. K. Oliver, C. C. Wallace and B. L. Willis: Mass spawning in tropical reef corals. Science, N.Y.223, 1186–1189 (1984)Google Scholar
  9. Heyward, A. J. and J. D. Collins: Growth and sexual reproduction in the scleractinian coralMontipora digitata (Dana) Aust. J. mar. Freshwat. Res.36, 441–446 (1985a)Google Scholar
  10. Heyward, A. J. and J. D. Collins: Fragmentation inMontipora ramosa: the genet and ramet concept applied to a reef coral. Coral Reefs4, 35–40 (1985b)Google Scholar
  11. Hildemann, W. H., R. L. Raison, G. Cheung, C. J. Hull, L. Akaka and J. Okamoto: Immunological specificity and memory in a scleractinian coral. Nature, Lond.270, 219–223 (1977)Google Scholar
  12. Kojis, B. L. and N.J. Quinn: Aspects of suxual reproduction and larval development in the shallow water hermatypic coralGoniastrea australiensis (Edwards and Haine, 1857). Bull. mar. Sci.31, 558–573 (1981a)Google Scholar
  13. Kojis, B. L. and N. J. Quinn: Reproductive strategies in four species ofPorites (Scleractinia). Manila, Philippines, Proc. 4th int. Symp. coral Reefs2, 145–151 (1981b) (Ed. by E. D. Gomez et al. Quezon City, Philippines: Marine Sciences Center, University of the Philippines)Google Scholar
  14. Kojis, B. L. and N. J. Quinn: Reproductive ecology of two faviid corals (Coelenterata: Scleractinia). Mar. Ecol. Prog. Ser.8, 251–255 (1982)Google Scholar
  15. Morgan, T. H.: The conditions that lead to normal or abnormal development ofCiona. Biol. Bull. mar. biol. Lab., Woods Hole88, 50–62 (1945)Google Scholar
  16. Pianka, H. D.: Ctenophora.In:The reproduction of marine invertebrates, Vol. 1. pp 201–265. Ed. by A. C. Giese and J. S. Pearse. New York: Academic Press. 1974Google Scholar
  17. Reeve, M. and T. C. Cosper: Chaetognatha.In: The reproduction of marine invertebrates, Vol. 2, pp 152–184. Ed. by A. C. Giese and J. S. Pearse. New York: Academic Press 1975Google Scholar
  18. Scofield, V. L., J. M. Schlumberger, L. A. West and I. L. Weissman: Protochordate allorecognition is controlled by an MHC-like gene system. Nature, Lond.295, 499–502 (1982)Google Scholar
  19. Shields, W. M.: Inbreeding and the paradox of sex: a resolution? Evolutionary Theory5, 245–279 (1982)Google Scholar
  20. Stoddart, J. A.: Asexual production of planulae in the coralPocillopora damicornis. Mar. Biol.76, 272–284 (1983)Google Scholar
  21. Stoddart, J. A., D. J. Ayre, B. Willis and A. J. Heyward: Self recognition in sponges and corals? Evolution Lawrence, Kansas39, 461–463 (1985)Google Scholar
  22. Szmant-Froelich, A., P. Yevich and M. E. Q. Pilson: Gametogenesis and early development of the temperate coralAstrangia danae (Anthozoa, Scleractinia). Biol. Bull. mar. biol. Lab., Woods Hole158, 257–269 (1980)Google Scholar
  23. Williams, D. McB., E. Wolanski and J. C. Andrews: Transport mechanisms and potential movements of planktonic larvae in the central region of the Great Barrier Reef. Coral Reefs3, 229–236 (1984)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • A. J. Heyward
    • 1
  • R. C. Babcock
    • 1
  1. 1.Department of Marine BiologyJames Cook University of North QueenslandTownsvilleAustralia

Personalised recommendations