Chemistry of Heterocyclic Compounds

, Volume 18, Issue 7, pp 683–689 | Cite as

2-phenyl-1,3,4-thiadiazol-2-ines

  • K. N. Zelenin
  • V. A. Khrustalev
  • V. V. Alekseev
  • P. A. Sharbatyan
  • A. T. Lebedev
Article

Abstract

According to data from the1H and13C NMR spectra in nonpolar media and the mass spectra, alkylidene derivatives of thiobenzhydrazide have a 1,3,4-thiadiazol-2-ine structure rather than a thiobenzhydrazone structure. The products of condensation of thiobenzhydrazide with acetone and anisaldehyde in methanol undergo partial isomerization to thiobenzhydrazones. The hydrochlorides of the compounds under discussion are the corresponding 1,3,4-thiadiazolinium salts, in which the proton is coordinated with the N4, atom. The 2-phenyl-5,5-dimethyl-1,3,4-thiadiazol-2-ine anion has a noncyclic thioenolate structure.

Keywords

Methanol Acetone Mass Spectrum Organic Chemistry Hydrochloride 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    B. Holmberg, Ark. Kern.,25A, No. 18 (1947).Google Scholar
  2. 2.
    K. A. Jensen and C. Pedersen, Acta Chem. Scand.,15, 4097 (1961).Google Scholar
  3. 3.
    J. Sandström, Acta Chem. Scand.,17, 937 (1963).Google Scholar
  4. 4.
    A. H. Duffield, C. Djerassi, and J. Sandstrom, Acta Chem. Scand.,21, 2167 (1967).Google Scholar
  5. 5.
    M. Anteunis, F. Borremans, W. Tadros, A. A. Zaher, and S. Gliobrial, J. Chem. Soc., Perkin Trans. I, No. 4, 616 (1972).Google Scholar
  6. 6.
    H. Schildknecht and G. Hatzmann, Liebigs Ann.,724, 226 (1969).Google Scholar
  7. 7.
    U. Masayuki and K. Seiju, J. Heterocycl. Chem.,15, 807 (1978).Google Scholar
  8. 8.
    U. Masayuki and K. Seiju, J. Heterocycl. Chem., {bl16}, 1273 (1979).Google Scholar
  9. 9.
    V. A. Khrustalev, K. N. Zelenin, V. P. Sergutina, and V. V. Pinson, Khim. Geterotsikl. Soedin., No. 8, 1188 (1980).Google Scholar
  10. 10.
    K. H. Mayer and D. Lauerer, Liebigs. Ann.,731, 142 (1970).Google Scholar
  11. 11.
    V. A. Khrustalev, K. N. Zelenin, V. V. Pinson, and V. V. Alekseev, Zh. Org. Khim.,16, 2237 (1980).Google Scholar
  12. 12.
    G. Gübitz, R. Wintersteiger, A. Fuchsgruber, and G. Zigeuner, Monatsh. Chem.,108, 381 (1977).Google Scholar
  13. 13.
    B. Holmberg, Ark. Kem.,9, No. 4 (1955).Google Scholar
  14. 14.
    V. V. Alekseev, V. A. Khrustalev, and K. N. Zelenin, Khim. Geterotsikl. Soedin., No. 11, 1569 (1981).Google Scholar
  15. 15.
    V. A. Khrustalev, K. N. Zelenin, and V. V. Alekseev, Zh. Org. Khim.,17, 2451 (1981).Google Scholar
  16. 16.
    B. Holmberg, Ark. Kem.,17A, No. 23 (1943).Google Scholar
  17. 17.
    T. Curtius and L. Pflug, J. Prakt. Chem.,2, 535 (1891).Google Scholar
  18. 18.
    N. M. Kizhner, Zh. Russk. Fiz.-khim. Ova.,47, 1111 (1915).Google Scholar
  19. 19.
    A. N. Kost and R. S. Sagitullin, Zh. Obshch. Khim.,27, No. 12, 3338 (1957).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • K. N. Zelenin
    • 1
    • 2
  • V. A. Khrustalev
    • 1
    • 2
  • V. V. Alekseev
    • 1
    • 2
  • P. A. Sharbatyan
    • 1
    • 2
  • A. T. Lebedev
    • 1
    • 2
  1. 1.S. M. Kirov Military Medical AcademyLeningrad
  2. 2.M. V. Lomonosov Moscow State UniversityMoscow

Personalised recommendations