Advertisement

Applied Composite Materials

, Volume 2, Issue 5, pp 265–292 | Cite as

Modeling behavior of cross-ply ceramic matrix composites under quasi-static loading

  • J. P. Solti
  • S. Mall
  • D. D. Robertson
Article

Abstract

This paper presents a simplified analysis (model and failure criteria) for predicting the stress-strain responce of cross-ply fiber-reinforced ceramic composite laminates under quasi-static loading and unloading conditions. The model formulation is an extension of the modified shear-lag theory previously introduced by the authors for analyzing unidirectional laminates for the same loading conditions. The present formulation considers a general damage state consisting of matrix cracking in both the transverse and longitudinal plies, as well as fiber failure. These damage modes are modeled by a set of failure criteria with the minimum reliance on empirical data, and can be easily employed in a variety of numerical or analytical methods. The criteria used to estimate the extent of matrix cracking and interfacial debonding are closed-form and require the basic material properties. The failure criterion for fiber failure requires a priori knowledge of a single empirical constant. This parameter, however, may be determined without microscopic investigation of the laminate microstructure. The results from the present simplified analysis match well with the experimental data.

Key words

ceramic matrix composites (CMCs) cross-ply laminate shear-lag theory composite modeling (micromechanics) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Solti, J. P. Mall, S. and Robertson, D. D., ‘Modeling Damage in Unidirectional Ceramic Matrix Composites’,Composites Science and Technology 54, 1995, 55–66.Google Scholar
  2. 2.
    Solti, J. P. Mall, S. and Robertson, D. D., ‘Modeling of Progressive Damage in Unidirectional Ceramic Matrix Composites’, in S. R. White, H. T. Hahn and W. F. Jones (eds),Recent Advances in Composite Materials 56, pp. 1–11. Joint Applied Mechanics and Materials Summer Conference, Los Angeles, CA, 1995.Google Scholar
  3. 3.
    Zawada, L. P., Butkus, L. M. and Hartman, G. A., ‘Room Temperature Tensile and Fatigue Properties of Silicon Carbide Fiber Reinforced Aluminosilicate Glass’,Ceramic Engineering and Science Proceedings 1(9–10), 1990, 1592–1606.Google Scholar
  4. 4.
    Mall, S., Fink, W. E. and Kim, R. Y., ‘Mechanical Behavior of a Fiber Reinforced Ceramic Composite under Off-Axis Loading’,Advanced Composite Materials 2(1), 1992, 69–83.Google Scholar
  5. 5.
    Mall, S. and Kim, R. Y., ‘Failure Mechanisms in Laminates of Silicon Carbide/Calcuim-Aluminosilicate Ceramic Composite’,Composite 23(4), July 1992, 215–222.Google Scholar
  6. 6.
    Opalski, F. A., ‘Fatigue Behavior of a Cross-Ply Ceramic Matrix Composite Under Tension-Tension and Tension-Compression Loading’, Master's thesis, School of Engineering, Air Force Institute of Technology (AETC), Wright-Patterson AFB, OH, December 1992.Google Scholar
  7. 7.
    Pryce, A. W. and Smith, P. A., ‘Behavior of Unidirectional and Crossply Ceramic Matrix Composites Under Quasi-Static Tensile Loading’,J. Mater. Sci. 27, 1992, 2695–2704.Google Scholar
  8. 8.
    Karandikar, P. and Chou, T. W., ‘Characterization and Modeling of Microcracking and Elastic Moduli Changes in Nicalon/CAS Composites’,Composites Science and Technology 46, 1993, 1–11.Google Scholar
  9. 9.
    El Mahi, A., Berthelot, J.-M. and Brillaud, J., ‘Stiffness Reduction and Energy Release Rate of Cross-Ply Laminates During Fatigue Tests’,Composite Structures 30, 1995, 123–130.Google Scholar
  10. 10.
    Lee, S. S. and Stinchcomb, W. W., ‘Damage Mechanisms of Cross-Ply Nicalon/CAS-II Laminates Under Cyclic Tension’,Ceramic Engineering and Science Proceedings 15(4), 1994, 40–48.Google Scholar
  11. 11.
    Ogin, S. L., Smith, P. A. and Beaumont, P. W. R., ‘Matrix Cracking and Stiffness Reduction during the Fatigue of a (0/90)s GFRP Laminate’,Composites Science and Technology 22, 1985, 23–31.Google Scholar
  12. 12.
    Wang, A. S. D. and Crossman, F. W., ‘Initiation and Growth of Transverse Cracks and Edge Delamination in Composite Laminates, Part 1. An Energy Method’,J. Comp. Mat. 14, 1980, 71–87.Google Scholar
  13. 13.
    Reifsnider, K. L., Henneke, E. G. and Stichcomb, W. W., ‘Defect-Property Relationships in Composite Materials’, AFML-TR-76-81, Part IV, Air Force Materials Laboratory, June 1979.Google Scholar
  14. 14.
    Daniel, I. M. and Anastassopoulos, G., ‘Failure Mechanisms and Damage Evolution in Crossply Ceramic-Matrix Composites’,International Journal of Solids and Structures 32(3/4), 1995, 341–355.Google Scholar
  15. 15.
    Pryce, A. W. and Smith, P. A., ‘Matrix Cracking in Unidirectional Ceramic Matrix Composites Under Quasi-Static and Cyclic Loading’,Acta Metall. Mater. 41(4), 1993, 1269–1281.Google Scholar
  16. 16.
    Lee, J. W. and Daniel, I. M., ‘Progressive Transverse Cracking of Crossply Composite Laminates’,J. of Comp. Matr. 24, 1990, 1225–1243.Google Scholar
  17. 17.
    Garrett, K. W. and Bailey, J. E., ‘Multiple Transverse Fracture in 90° Cross-Ply Laminates of a Glass Fibre-Reinforced Polyester’,J. Mater. Sci. 12, 1977, 157–168.Google Scholar
  18. 18.
    Flaggs, D. L., ‘Prediction of Tensile Matrix Failure in Composite Laminates’,J. of Comp. Matr. 19, January 1985, 29–50.Google Scholar
  19. 19.
    Laws, N. and Dvorak, G. J., ‘Progressive Transverse Cracking in Composite Laminates’,J. of Comp. Matr. 22, 1988, 900–916.Google Scholar
  20. 20.
    Lim, S. G. and Hong, C. S., ‘Prediction of Transverse Cracking and Stiffness Reduction in Cross-Ply Laminated Composites’,J. of Comp. Matr. 23, 1989, 695–713.Google Scholar
  21. 21.
    Zhang, J., Fan, J. and Soutis, C., ‘Analysis of Multiple Matrix Cracking in [±Θm/90°n] Composite Laminates. Part 2: Development of Transverse Ply Cracks’,Composites 23, 1992, 299.Google Scholar
  22. 22.
    Han, Y. M., Hahn, H. T. and Croman, R. B., ‘A Simplified Analysis of Transverse Ply Cracking in Cross-Ply Laminates’,Composites Science and Technology 31(3), 1988, 165–177.Google Scholar
  23. 23.
    Bader, M. G., Bailey, J. E., Curtis, P. T. and Parvizi, A., ‘The Mechanisms of Initiation and Development of Damage in Multi-Axial Fibre-Reinforced Plastic Laminates’, inMechanical Behaviors of Materials, Vol. 3, pp. 227–239. Proceedings of the Third International Conference held in Cambridge, England, 1979.Google Scholar
  24. 24.
    Bailey, J. E., Curtis, P. T. and Parvizi, A., ‘On the Transverse Cracking and Longitudinal Splitting Behavior of Glass and Carbon Fibre Reinforced Epoxy Cross-Ply Laminates and the Effect of Poisson and Thermally Generated Strain’,Proc. R. Soc. Lond. A. 366, 1979, 599–623.Google Scholar
  25. 25.
    Parvizi, A., Garrett, K. W. and Bailey, J. E., ‘Constrained Cracking in Glass Fibre-Reinforced Epoxy Cross-Ply Laminates’,J. Mater. Sci. 13(1), 1978, 195–201.Google Scholar
  26. 26.
    Fukunaga, H., Chou, T. W., Peters, P. W. M. and Schulte, K., ‘Probabilistic Failure Strength Analyses of Graphite/Epoxy Cross-Ply Laminates’,J. of Comp. Matr. 18, July 1984, 339–356.Google Scholar
  27. 27.
    Reifsnider, K. L., ‘Some Fundamental Aspects of Fatigue and Fracture Response of Composite Materials’, in14th Annual Meeting of Society of Engineering Science, Lehigh University, Bethleham, PA, November 1977.Google Scholar
  28. 28.
    Highsmith, A. L. and Reifsnider, K. L., ‘Stiffness-Reduction Mechanisms in Composite Laminates’,ASTM STP 775, 1982, 103.Google Scholar
  29. 29.
    Pryce, A. W. and Smith, P. A., ‘Matrix Cracking in Crossply Ceramic Matrix Composites Under Quasi-Static and Cyclic Loading’,Acta Metall. Mater. 42(3), 1994, 861–870.Google Scholar
  30. 30.
    Kuo, W. S. and Chou, T. W., ‘Multiple Cracking of Unidirectional and Cross-Ply Ceramic Matrix Composites’,J. Amer. Cer. Soc. 78(3), 1995, 745–755.Google Scholar
  31. 31.
    Daniel, I. M., Anastassopoulos, G. and Lee, J. W., ‘Failure Mechanisms and Interfacial Shear Strength in Brittle-Matrix Composites’, in W. F. Jones (ed.),Advances in Experimental Mechanics and Biomimetrics, Vol. 29, New York, NY, 1992, pp. 57–69. American Society of Mechanical Engineers.Google Scholar
  32. 32.
    Beyerle, D. S., Spearing, S. M. and Evans, A. G., ‘Damage Mechanisms and the Mechanical Properties of a Laminated 0/90 Ceramic/Matrix Composite’,J. Amer. Cer. Soc. 75(12), 1992, 3321–3330.Google Scholar
  33. 33.
    Xia, Z. C. and Hutchinson, J. W., ‘Matrix Cracking of Cross-Ply Ceramic Composites’,Acta Metall. Mater. 42(6), 1994, 1933–1945.Google Scholar
  34. 34.
    Xia, Z. C., Carr, R. R. and Hutchinson, J. W., ‘Transverse Cracking in Fiber-Reinforced Brittle Matrix, Cross-Ply Laminates’,Acta Metall. Mater. 41(8), 1993, 2365–2376.Google Scholar
  35. 35.
    Ji, F. S., Dharani, L. R. and Mall, S., ‘Fracture Analysis of Transverse Cracking in 90° Plies of Cross-Ply Composite Laminates’, to be published, 1995.Google Scholar
  36. 36.
    Hashin, Z., ‘Analysis of Stiffness Reduction of Cracked Cross-Ply Laminates’,Engineering Fracture Mechanics 25(5/6), 1986, 771–778.Google Scholar
  37. 37.
    Nairn, J. A., Hu, S. and Bark, J. S., ‘A Critical Evaluation of Theories for Predicting Microcracking in Composite Laminates’,J. Mater. Sci. 28, 1993, 5099–5111.Google Scholar
  38. 38.
    Wang, A. S. D., Chou, P. C. and Lei, S. C., ‘A Stochastic Model for the Growth of Matrix Cracks in Composite Laminates’,J. of Comp. Mater. 18, May 1984, 239–254.Google Scholar
  39. 39.
    Han, Y. M. and Hahn, H. T., ‘Ply Cracking and Property Degradations of Symmetric Balanced Laminates Under General In-Plane Loading’,Composites Science and Technology 35, 1989, 377–397.Google Scholar
  40. 40.
    Talreja, R., ‘Transverse Cracking and Stiffness Reduction in Composite Laminates’,J. of Comp. Mater. 19, July 1985, 355–375.Google Scholar
  41. 41.
    Dvorak, G. J. and Laws, N., ‘Analysis of Progressive Matrix Cracking in Composite Laminates II. First Ply Failure’,J. of Comp. Maters. 21, April 1987, 309–329.Google Scholar
  42. 42.
    Guild, F. J., Ogin, S. L. and Smith, P. A., ‘Modelling of 90° Cracking in Crossply Laminates, Including Three-Dimensional Effects’,J. Comp. Mat. 27(7), 1993, 646–666.Google Scholar
  43. 43.
    Walter, M. E. and Ravichandran, G., ‘An Experimental Investigation of Damage Evolution in a Ceramic Matrix Composite’,J. Engr. Matrs. and Tech. 117, January 1995, 101–107.Google Scholar
  44. 44.
    Kuo, W. S., Damage of Multi-Directionally Reinforced Ceramic Matrix Composites, PhD thesis, Department of Mechanical Engineering, University of Delaware, August 1992.Google Scholar
  45. 45.
    Marshall, D. B., Cox, B. N. and Evans, A. G., ‘The Mechanics of Matrix Cracking in Brittle-Matrix Fiber Composites’,Acta Metall. Mater. 33, 1985, 2013–2021.Google Scholar
  46. 46.
    Budiansky, B., Hutchinson, J. W. and Evans, A. G., ‘Matrix Fracture in Fiber-Reinforced Ceramics’,J. Mech. Phys. Solids 34, 1986, 167–189.Google Scholar
  47. 47.
    McCartney, L. N., ‘Mechanics of Matrix Cracking in Brittle-Matrix Fiber-Reinforced Composites’,Proc. Roy. Soc. London A 409, 1987, 329–350.Google Scholar
  48. 48.
    Spearing, S. M. and Zok, F. W., ‘Stochastic Aspects of Matrix Cracking in Brittle Matrix Composites’,J. Engr. Mater. and Tech. 115(3), 1993, 314–418.Google Scholar
  49. 49.
    Curtin, W. A., ‘Multiple Matrix Cracking in Brittle Matrix Composites’,Acta Metall. Mater. 41(5), 1993, 1369–1377.Google Scholar
  50. 50.
    Weitsman, Y. and Zhu, H., ‘Multi-Fracture of Ceramic Composites’,J. Mech. Phys. Solids 41(2), 1993, 351–388.Google Scholar
  51. 51.
    Lee, J. W. and Daniel, I. M., ‘Deformation and Failure of Longitudinally Loaded Brittle-Matrix Composites’, in G. C. Grimes (ed.),Proceedings of the Tenth Symposium on Composite Materials: Testing and Design, ASTM, 1992, pp. 204–221.Google Scholar
  52. 52.
    Aveston, J. and Kelly, A., ‘Theory of Multiple Fracture of Fibrous Composites’,J. Mater. Sci. 8, 1973, 352–362.Google Scholar
  53. 53.
    Cho, C., Holmes, J. W. and Barber, J. R., ‘Distribution of Matrix Cracks in a Uniaxial Ceramic Composite’,J. Amer. Cer. Soc. 75(2), 1992, 316–324.Google Scholar
  54. 54.
    Rouby, D. and Reynaud, P. ‘Fatigue Behavior Related to Interface Modification During Load Cycling in Ceramic-Matrix Fibre Composites’,Composites Science and Technology 48, 1993, 109–118.Google Scholar
  55. 55.
    Rosen, B. W., ‘Tensile Failure of Fibrous Composites’,AIAA Journal 2(11), 1964, 1985–1991.Google Scholar
  56. 56.
    Curtin, W. A., ‘Theory of Mechanical Properties of Ceramic-Matrix Composites’,J. Amer. Cer. Soc. 74(11), 1991, 2837–2845.Google Scholar
  57. 57.
    Gulino, R. and Phoenix, S. L., ‘Weibull Strength Statistics for Graphite Fibres Measured from the Break Progression in a Model Graphite/Glass/Epoxy Microcomposite’,J. Mater. Sci. 26, 1991, 3107–3118.Google Scholar
  58. 58.
    Liangbo, D. and Fuqun, F., ‘Statistical Analysis of Failure of Unidirectionally Fibre-Reinforced Composites with Local Load-Sharing’,International Journal of Fracture 59, 1993, 69–81.Google Scholar
  59. 59.
    Karandikar, P. G., Evolution of Damage and Mechanical Response in Ceramic Matrix Composites Under Monotonic and Fatigue Loadings: Experimental Characterization and Modeling, PhD thesis, Department of Mechanical Engineering, University of Delaware, 1992.Google Scholar
  60. 60.
    Wang, S. W. and Parvizi-Majidi, A., ‘Mechanical Behavior of NicalonTM Fiber-Reinforced Calcium Aluminosilicate Matrix Composites’,Ceramic Engineering and Science Proceedings 11(9–10), 1990, 1607–1616.Google Scholar
  61. 61.
    Agins, D. M., Static Fracture Behavior of a Ceramic Matrix Composite at Elevated Temperatures, Master's thesis, School of Engineering, Air Force Institute of Technology (AETC), Wright-Patterson AFB, OH, December 1993.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • J. P. Solti
    • 1
  • S. Mall
    • 1
  • D. D. Robertson
    • 1
  1. 1.Department of Astronautics and AeronauticsAir Force Institute of Technology

Personalised recommendations