Journal of Nondestructive Evaluation

, Volume 5, Issue 1, pp 9–14 | Cite as

The volume integral method of eddy current modeling

  • W. Scott Dunbar


The volume integral method is proposed as an alternative method for computing the impedance changes associated with eddy current measurements. In this method, the use of an appropriate Green's function for the host medium requires that integration be performed only over the volumes of defects. Although only rather simple host medium geometries are amenable to this type of modeling, the method can be linked to finite element models of more complicated geometries. In this way, the amount of finite element modeling may be minimized.

Key words

Eddy currents modeling nondestructive testing volume integral 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. L. Burrows,A Theory of Eddy Current Flaw Detection (Ph.D. Thesis, University of Michigan, 1964).Google Scholar
  2. 2.
    C. V. Dodd and W. E. Deeds, Analytical solutions to eddy current probe coil problems,J. Appl. Phys. 39:2829–2838 (1968).Google Scholar
  3. 3.
    C. C. Cheng, C. V. Dodd, and W. E. Deeds, General analysis of probe coils near stratified conductors,Int. J. Nondestr. Testing 3: 109–130 (1971).Google Scholar
  4. 4.
    J. W. Luquire, Theoretical analysis of selected electromagnetic induction problems (Ph.D. Thesis, University of Tennessee, 1969).Google Scholar
  5. 5.
    Majid Riaziat, Analytical methods in electromagnetic nondestructive evaluation (Ph.D. Thesis, Stanford University, 1984).Google Scholar
  6. 6.
    W. Lord and R. Palanisamy, inEddy Current Characterization of Material and Structures, G. Birnbaumet al, eds. ASTM STP 722 (American Society for Testing and Materials, Philadelphia, Pennsylvania., 1979), pp. 5–21.Google Scholar
  7. 7.
    N.A. Demerdash and T. W. Nehl, inEddy Current Characterization of Material and Structures, G. Birnbaumet al. eds, ASTM STP 722 (American Society for Testing and Materials, Philadelphia, Pennsylvania., 1979), pp. 22–47.Google Scholar
  8. 8.
    M. V. K. Chari and T. G. Kincaid, inEddy Current Characterization of Materials and Structures, G. Birnbaumet al., eds., ASTM STP 722 (American Society for Testing and Materials, Philadelphia, Pennsylvania, 1979), pp. 59–75.Google Scholar
  9. 9.
    N. Ida, R. Palanisamy, and W. Lord, Eddy current probe design using finite element analysis,Materials Evaluation,41: 1389–1394 (1983).Google Scholar
  10. 10.
    G. L. Homer, R. C. Olsen, L. D. Philipp, and J. Staley, A method for predicting the response to three dimensional defects in eddy current NDE,Materials Evaluation 40: 1362–1366 (1982).Google Scholar
  11. 11.
    Arnold H. Kahn, Impedence of a coil in the vicinity of a crack,Journal of Research, Nat. Bur. Stand. 89(1): 47–54 (1984).Google Scholar
  12. 12.
    S. J. Salon and J. M. Schneider, A comparison of boundary integral and finite element formulations of the eddy current problem,IEEE Trans. Power Syst. Apparatus,100: 1473–1479 (1981).Google Scholar
  13. 13.
    G. W. Hohmann, Three dimensional induced polarization and electromagnetic modeling,Geophys. 40: 309–324 (1975).Google Scholar
  14. 14.
    G. W. Hohmann, Three dimensional EM modeling,Geophys. Surveys 6: 27–53 (1983).Google Scholar
  15. 15.
    A. P. Raiche, An integral equation approach to three dimensional modellingGeophys. J. Roy. Astr. Soc. 36: 363–376 (1974).Google Scholar
  16. 16.
    P. Weidelt, Electromagnetic induction in three dimensional structures,Geophys. 41: 85–109 (1975).Google Scholar
  17. 17.
    J. J. Lajoie and G. F. West, The electromagnetic response of a conductive inhomogeneity in a layered earth,Geophys. 41: 1133–1156 (1976).Google Scholar
  18. 18.
    W. H. Meyer,Computer Modelling of Electromagnetic Prospecting Methods (Ph.D. Thesis, University of California, Berkeley, 1976).Google Scholar
  19. 19.
    U. C. Das and S. K. Verma, Numerical considerations on computing the EM response of three dimensional inhomogeneities in a layered earth,Geophys. J. Roy. Astr. Soc. 66: 733–740 (1981).Google Scholar
  20. 20.
    U. C. Das and S. K. Verma, Electromagnetic response of an arbitrary straped three dimensional conductor in a layered earth-numerical results,Geophys. J. Roy. Astr. Soc. 68: 55–66 (1982).Google Scholar
  21. 21.
    J. E. Hanneson,The Horizontal Loop EM Response of a Thin Vertical Conductor in a Conducting Halfspace (Ph.D. Thesis, University of Manitoba, 1981). (Available as Rept. No. 19, Geophysics Laboratory, University of Toronto).Google Scholar
  22. 22.
    P. E. Wannamaker, G. W. Hohmann, and W. A. San Filipo, Electromagnetic modeling of three dimensional bodies in layered earths using integral equations,Geophys. 49: 60–74 (1984).Google Scholar
  23. 23.
    K. H. Lee, D. F. Pridmore, and H. F. Morrison, A hybrid three dimensional electromagnetic modeling scheme,Geophys. 46: 796–805 (1981).Google Scholar
  24. 24.
    Geophys. 49(7) (1984).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • W. Scott Dunbar
    • 1
  1. 1.Department of Metallurgical EngineeringUniversity of British ColumbiaVancouverCanada

Personalised recommendations