Journal of Nondestructive Evaluation

, Volume 12, Issue 2, pp 151–158 | Cite as

Ultrasonic beam propagation through a bimetallic weld—A comparison of predictions of the Gauss-Hermite beam model and finite element method

  • A. Minachi
  • J. Mould
  • R. B. Thompson


In this paper, predictions of two models for the propagation of ultrasonic beams through a two-dimensional, bimetallic weld geometry are compared. The finite element method can predict beam propagation through quite general geometry with high accuracy. This model, however, requires significant computational time. On the other hand, the approximate Gauss-Hermite model offers considerably greater computational speed, but has lower accuracy in certain regions and cannot treat the most general geometries and inhomogeneities in material properties. This paper compares the performances of the two models for the case of the two-dimensional, bimetallic weld consisting of multiple layers, some of which have anisotropic properties. It is found that the results of the two models are in good agreement in the vicinity of the central ray, and that the deviation increases as one moves away from the axis. Also, as the beam propagates through multiple interfaces, the accuracy of the Gauss-Hermite solution decreases.

Key words

Beam propagation bimetallic weld Gauss-Hermite beam model finite element method ultrasonics anisotropic medium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. A. Ogilvy, A layered media model for ray propagation in anisotropic, inhomogeneous materials,Appl. Math. Mod. 14237–247. (1990).Google Scholar
  2. 2.
    H. Zhu, A method to evaluate three-dimensional time-harmonic elastodynamic Green's function in transverseley isotropic media,J. Appl. Mech. 59S97-S101 (1992).Google Scholar
  3. 3.
    A. H. Harker, J. A. Ogilvy, and J. A. G. Temple, Modeling ultrasonic inspection of austenitic weld,J. Nondestr. Eval. 9155–165 (1990).Google Scholar
  4. 4.
    W. Lord, R. Ludwig, and Z. You, Development in ultrasonic modeling with finite element analysis,J. Nondestr. Eval. 9129–143 (1990).Google Scholar
  5. 5.
    B. Nouailhas, G. V. Chi Nguyen, F. Pons, and S. Vermersch, Ultrasonic modeling and experiments: An industrial case: Bimetallic weld in nuclear power plants,J. Nondestr. Eval. 9145–153 (1990).Google Scholar
  6. 6.
    B. P. Newberry and R. B. Thompson, A paraxial theory for the propagation of ultrasonic beam in anisotropic solid,J. Acoust, Soc. Am. 852290–2300 (1989).Google Scholar
  7. 7.
    B. P. Newberry, A. Minachi, and R. B. Thompson, Ultrasonic beam propagation in cast stainless steel, inReview of Progress in QNDE Vol. 8B, D. O. Thompson and D. E. Chimenti, eds. (Plenum, New York, 1989); pp. 2089–2096.Google Scholar
  8. 8.
    A. Minachi, Z. You, R. B. Thompson, and W. Lord, Predictions of the Gauss-Hermite beam model and finite element method for ultrasonic propagation through anisotropic stainless steel, inIEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control (in press).Google Scholar
  9. 9.
    T. J. R. Hughes,The Finite Element Method (Prentice Hall, Englewood Cliffs, NJ, 1987.Google Scholar
  10. 10.
    O. C. Zienkiewicz,The Finite Element Method (McGraw-Hill Book Co. Ltd., London, 1977).Google Scholar
  11. 11.
    D. K. Vaughan and E. Richardson,FLEX User's Manual Version 1-H.1 (Weidlinger Associates, Los Altos, CA, 1990).Google Scholar
  12. 12.
    J. Lysmer and R. L. Kuhlemeyer,Finite Dynamic Model for Infinite Media, Vol. 95 (ASCE Inl. Eng. Mech. Div., 1969).Google Scholar
  13. 13.
    R. B. Thompson, T. A. Gray, J. H. Rose, V. G. Kogan, and E. F. Lopes, The Radiation of Elliptical and Bicylindrically Focused Piston Transducers,J. Acoust. Soc. Am. 821818–1828 (1987).Google Scholar
  14. 14.
    E. Cavanagh and B. D. Cook, Lens in the nearfield of a circular transducer: Gaussian-Laguerre formulation,J. Acoust. Soc. Am. 69345–351 (1981).Google Scholar
  15. 15.
    R. B. Thompson and E. F. Lopes, The effects of focusing and refraction on Gaussian ultrasonic beamsJ. Nondestr. Eval. 4107–123 (1984).Google Scholar
  16. 16.
    F. J. Margetan, T. A. Gray, R. B. Thompson, and B. P. Newberry, A model for ultrasound transmission through graphite composite plates containing delaminations, inReview of Progress in QNDE, Vol. 7B, D. O. Thompson and D. E. Chimenti, eds. (Plenum, New York, 1988); pp. 1083–1092.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • A. Minachi
    • 1
  • J. Mould
    • 2
  • R. B. Thompson
    • 1
  1. 1.Center for Nondestructive EvaluationIowa State UniversityAmes
  2. 2.Weidlinger AssociatesLos Altos

Personalised recommendations