Plasma Chemistry and Plasma Processing

, Volume 2, Issue 4, pp 331–339 | Cite as

Kinetics and mechanism of the decomposition of CS2, OCS, and SCl2 in a radiofrequency pulse discharge

  • John E. Nicholas
  • Christopher A. Amodio
Article

Abstract

The identification of transient species in r.f. discharges and measurement of rate coefficients for their reactions contributes to the understanding of the complex mechanisms in r.f. plasma chemistry. Using kinetic spectroscopy in conjunction with a short-duration r.f. pulse to investigate the decomposition of CS2, OCS, and SCl2 at low pressure, it has been shown that the predominant primary dissociation steps are CS2→CS+S, OCS→CO+S(1D), and SCl2→S+Cl+Cl. With OCS the most important subsequent steps involved the formation and removal of S2: S(1D)+OCS→CO+S2(a1Δ), S2(a1Δ)+M→S2(X3Σ)+M, (13), and 2S2+M→S4+M(15). Taking the previously published value of k12, computer simulation gave the rate coefficient values k13=6.4±2.4×108 mol−1 dm3 s−1 and k15=1.8±0.5×1013 mol−2 dm6 s−1 at 295±3 K.

Key words

Pulsed r.f. discharge kinetic spectroscopy identification of transient species rate coefficients 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. E. Nicholas and P. W. Smith,J. Phys. D. 9, 447 (1976).Google Scholar
  2. 2.
    J. E. Nicholas, C. A. Amodio, and M. J. Baker,J. Chem. Soc. Faraday Trans. I 75, 1868 (1979).Google Scholar
  3. 3.
    J. E. Nicholas and C. A. Amodio,J. Chem. Soc. Faraday Trans. I 76, 1669 (1980).Google Scholar
  4. 4.
    T. M. Lowry and G. Jessop,J. Chem. Soc., 1421 (1929).Google Scholar
  5. 5.
    R. W. B. Pearse and A. G. Gaydon,The Identification of Molecular Spectra, Chapman and Hall, London (1976).Google Scholar
  6. 6.
    P. Fowles, M. de Sorgo, A. J. Yarwood, O. P. Strausz, and H. E. Gunning,J. Am. Chem. Soc. 89, 1352 (1967).Google Scholar
  7. 7.
    H. Okabe,Photochemistry of Small Molecules, (Wiley-Interscience, New York (1978).Google Scholar
  8. 8.
    A. B. Callear,Proc. Roy. Soc. A 276, 401 (1963).Google Scholar
  9. 9.
    H. Okabe,J. Chem. Phys. 56, 4381 (1972).Google Scholar
  10. 10.
    W. D. McGrath, J. J. McGarvey, and N. N. Dempster,Can. J. Chem 45, 2454 (1967).Google Scholar
  11. 11.
    R. J. Donovan, L. J. Kirsch, and D. Husain,Nature 222, 1164 (1969).Google Scholar
  12. 12.
    G. E. Gibson and N. S. Bayliss,PHys. Rev. 44, 188 (1933).Google Scholar
  13. 13.
    R. J. Donovan, D. Husain, and P. T. Jackson,Trans. Faraday Soc. 64, 1798 (1968).Google Scholar
  14. 14.
    C. Morley and I. W. M. Smith,Trans. Faraday Soc. 67, 2575 (1971).Google Scholar
  15. 15.
    R. B. Klemm and D. D. Davis,J. Phys. Chem. 78, 1137 (1974).Google Scholar
  16. 16.
    R. B. Langford and G. A. Oldershaw,Trans. Faraday Soc. 69, 1389 (1973).Google Scholar
  17. 17.
    F. T. Crogh,Soc. Ind. Appl. Math. J. Numer. Anal. 10, 949 (1973).Google Scholar

Copyright information

© Plenam Publishing Corporation 1982

Authors and Affiliations

  • John E. Nicholas
    • 1
  • Christopher A. Amodio
    • 2
  1. 1.Department of ChemistryKing's CollegeStrand, London
  2. 2.St. Mary's CollegeTwickenham

Personalised recommendations