Advertisement

Hyperfine Interactions

, Volume 80, Issue 1–4, pp 965–970 | Cite as

The electric field gradient at111Cd in vanadium oxides

  • V. Naicker
  • A. Bartos
  • K. P. Lieb
  • M. Uhrmacher
  • T. Wenzel
  • D. Wiarda
Section III.6: Metals And Alloys
  • 24 Downloads

Abstract

The electric field gradient (efg) of111Cd in polycrystalline V2O5 was studied using perturbed angular correlation (PAC) spectroscopy, with the111In activity ion-implanted at 400 keV. Between the individual steps of an isochronal annealing program, a distinct efg (v Q 1=88.1(3) MHz, ν1=0.62(2)) was recorded the contribution of which increased with annealing temperature up to 74% at 870 K. Corresponding X-ray analysis of inactive V2O5 samples, which underwent the same annealing treatment, proved that the sample always stayed as V2O5. Since V2O5 has only one equivalent cation site, it is concluded that this efg belongs to111Cd at this site. Oxidation of a vanadium foil atT=675 and 800 K at\(p_{{\text{O}}_{\text{2}} } \)=200 mbar also yielded this efg. From PAC measurements in VO2, two well-defined efg's were found above and below the metal-semiconductor transition at 340 K, which are tentatively attributed to the monoclinic and the tetragonal phase.

Keywords

Electric Field Gradient Vanadium Oxide Vanadium Pentoxide Isochronal Annealing Electric Quadrupole Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Kesten, private communication.Google Scholar
  2. [2]
    M. Forker, H. Saitovitch and P.R. de Jesus Silva, J. Phys. C 17 (1984) 1055.ADSGoogle Scholar
  3. [3]
    M. Uhrmacher, K. Pampus, F.J. Bergmeister, D. Purschke and K.P. Lieb, Nucl. Instr. Meth. B 9 (1985) 234.ADSCrossRefGoogle Scholar
  4. [4]
    A. Bartos, K. Schemmerling, T. Menzel and M. Uhrmacher, Nucl. Instr. Meth. A 330 (1993) 132.ADSCrossRefGoogle Scholar
  5. [5]
    A. Byström, K.A. Wilhelmi and O. Brotzen, Acta Chem. Scand. 4 (1950) 1119.CrossRefGoogle Scholar
  6. [6]
    D. Wiarda, Doctoral Thesis, Göttingen, Germany (1992), unpublished; D. Wiarda, M. Uhrmacher, A. Bartos and K.P. Lieb, J. Phys.: Condens. Matter 5 (1993) 4111.Google Scholar
  7. [7]
    W. Paul, Mater. Res. Bull. 5 (1970) 691.CrossRefGoogle Scholar
  8. [8]
    M. Renteria, A.G. Bibiloni, M.S. Moreno, J. Desimoni, R.C. Mercader, A. Bartos, M. Uhrmacher and K.P. Lieb, J. Phys.: Condens. Matter 3 (1991) 3625.ADSGoogle Scholar
  9. [9]
    Th. Wenzel, A. Bartos, K.P. Lieb, M. Uhrmacher and D. Wiarda, Ann. Physik 1 (1992) 155.ADSCrossRefGoogle Scholar
  10. [10]
    A. Bartos, W. Bolse, K.P. Lieb and M. Uhrmacher, Phys. Lett. A 130 (1988) 177.ADSCrossRefGoogle Scholar
  11. [11]
    K. Lehnert, S. Unterricker and J. Hausbrand, Ann. Rep. ZfK Rossendorf (DDR), ZfK-295 (1975) 94.Google Scholar
  12. [12]
    R. Vianden, Hyp. Int. 15/16 (1983) 1081.ADSCrossRefGoogle Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1993

Authors and Affiliations

  • V. Naicker
    • 1
  • A. Bartos
    • 1
  • K. P. Lieb
    • 1
  • M. Uhrmacher
    • 1
  • T. Wenzel
    • 1
  • D. Wiarda
    • 1
  1. 1.II. Physikalisches Institut der Universität GöttingenGöttingenGermany

Personalised recommendations