Hyperfine Interactions

, Volume 81, Issue 1–4, pp 171–178 | Cite as

Fundamental aspects of FT-ICR and applications to chemistry

  • Melvin B. Comisarow
Article

Abstract

Fourier transform ion cyclotron resonance (FT-ICR) spectroscopy, a modern form of mass spectrometry whose advantages were first demonstrated in our laboratory in 1974, is characterized by ultrahigh mass resolution, wide mass range, high speed and automatic mass calibration. Together with the FT-ICR double resonance experiment, these advantages make FT-ICR a powerful technique for studying complex ion/molecule reaction pathways and for general problems in analytical mass spectrometry. In addition, the high resolution principles of FT-ICR have been widely adopted around the world for precise mass measurements of nuclides.

Keywords

Mass Spectrometry Mass Measurement Reaction Pathway Analytical Mass Spectrometry Mass Resolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E.O. Lawrence and M.S. Livingston, Phys. Rev. 40(1932)19.Google Scholar
  2. [2]
    M.B. Comisarow, Int. J. Mass Spectrom. Ion Phys. 37(1981)251.Google Scholar
  3. [3]
    M.B. Comisarow, J. Chem. Phys. 69(1978)4097.Google Scholar
  4. [4]
    M.B. Comisarow, Int. J. Mass Spectrom. Ion Phys. 26(1978)369.Google Scholar
  5. [5]
    R.R. Ernst, Adv. Mag. Res. 2(1968)1.Google Scholar
  6. [6]
    R.R. Ernst and W.A. Anderson, Rev. Sci. Instr. 37(1966)93.Google Scholar
  7. [7]
    M.B. Comisarow and A.G. Marshall, Chem. Phys. Lett. 25(1974)282.Google Scholar
  8. [8]
    M.B. Comisarow and A.G. Marshall, Chem. Phys. Lett. 26(1974)489.Google Scholar
  9. [9]
    M.B. Comisarow, Anal. Chim. Acta 178(1985)1.Google Scholar
  10. [10]
    M.B. Comisarow, Adv. Mass Spectrom. B7(1978)1042.Google Scholar
  11. [11]
    M.B. Comisarow, Adv. Mass Spectrom. 8(1980)1698.Google Scholar
  12. [12]
    M.B. Comisarow, V. Grassi and G. Parisod, Chem. Phys. Lett. 57(1978)413.Google Scholar
  13. [13]
    G. Parisod and M.B. Comisarow, Adv, Mass Spectrom. 8(1980)212.Google Scholar
  14. [14]
    Z. Kan and M.B. Comisarow, to be published.Google Scholar
  15. [15]
    K. Eller and H. Schwarz, Chem. Rev. 91(1991)1121.Google Scholar
  16. [16]
    B.S. Freiser, Chemtracts-Anal. Phys. Chem. 1(1989)65.Google Scholar
  17. [17]
    N.M.M. Nibbering, Adv. Phys. Org. Chem. 24(1988)1.Google Scholar
  18. [18]
    D.H. Russell, Mass Spectrom. Rev. 5(1986)167.Google Scholar
  19. [19]
    P. Sharpe and D.E. Richardson, Coord. Chem. Rev. 93(1989)59.Google Scholar
  20. [20]
    K.-P. Wanczek, Int. J. Mass Spectrom. Ion Proc. 95(1989)1.Google Scholar
  21. [21]
    Z. Lam, M.B. Comisarow, G.G.S. Dutton, D.A. Weil and A. Bjarnason, Rapid Commun. Mass Spectrom. 1(1987)83.Google Scholar
  22. [22]
    G. Baykut and J.R. Eyler, Trends Anal. Chem. 5(1986)44.Google Scholar
  23. [23]
    A.G. Marshall and L. Schweikhard, Int. J. Mass Spectrom. Ion Proc. 118(1993)37.Google Scholar
  24. [24]
    C.L. Wilkins, A.K. Chowdhury, L.M. Nuwaysir and M.L. Coates, Mass Spectrom. Rev. 8(1989)67.Google Scholar
  25. [25]
    M.V. Buchanan and R.L. Hettich, Anal. Chem. 65(1993)245.Google Scholar
  26. [26]
    L. Brown and G. Gabrielse, Rev. Mod. Phys. 58(1986)233.Google Scholar
  27. [27]
    E.A. Cornell, R.M. Weisskoff, K.R. Boyce and D.E. Prichard, J. Appl. Phys. 63(1990)4599.Google Scholar
  28. [28]
    J.T. Meek, W.G. Millen, G.W. Stockton and R.T. Kousez, Phys. Rev. C41(1990)2921.Google Scholar
  29. [29]
    M.V. Gorshkov, G.M. Alber, L. Schweikhard and A.G. Marshall, Phys. Rev. A47(1993)3433.Google Scholar
  30. [30]
    H. Stolzenberg, G. Audi, St. Becker, G. Bollen, F. Kern, H.-J. Kluge, R.B. Moore, Th. Otto, G. Savard and L. Schweikhard, Phys. Rev. Lett. 65(1990)3104.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1993

Authors and Affiliations

  • Melvin B. Comisarow
    • 1
  1. 1.Department of ChemistryUniversity of British ColumbiaVancouverCanada

Personalised recommendations