Journal of Nondestructive Evaluation

, Volume 10, Issue 4, pp 151–158 | Cite as

Techniques for measuring low levels of hydrogen or hydrogen-bearing materials in solids

  • William H. Miller
  • Arvind Kumar
  • Walter Meyer


Three new nondestructive techniques for detecting ppm levels of hydrogen in metals and solids are discussed, along with a review of existing techniques. Two of the new techniques use neutron beams to detect hydrogen. One of these is applicable to steel samples on the order of 1–5 cm in dimension, and has a lower level of detection of 2 weight ppm. The second nuclear technique is applicable to any metal or solid with a mass number greater than about 12, is most suitable for samples on the order of a few millimeters thick, and has a lower level of sensitivity of 0.4 weight ppm. The third technique uses a modulated beam mass spectrometry system, can handle samples up to 100 grams of any size (as long as the sample can be heated uniformly) and has a sensitivity of less than 0.02 weight ppm. Suggestions for possible applications of these techniques are discussed.

Key words

Hydrogen detection neutron beams mass spectrometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Fromm, and E. Gebhardt.Gase and kohlenstoff in Metallen (Springer, New York, 1976).Google Scholar
  2. 2.
    D. A. Berman, and V. S. Agarwala. The barnacle electrode method to determine diffusible hydrogen in steels, inHydrogen Embrittlement: Prevention and Control, ASTM STP 962, L. Raymond, ed. (American Society for Testing and Materials, Philadelphia, (1988), pp. 98–104.Google Scholar
  3. 3.
    Malcolm A. Fullenwider. The barnacle electrode: A compromise between analysis and experiment,Am. Soc. Testing Mater. 242–243 (1988).Google Scholar
  4. 4.
    A. Macher, W. de Krenk, and J. Schoonman. Electrochemical sensor for the determination of hydrogen in metals by potential measurement, inHydrogen Embrittlement: Prevention and Control, ASTM STP962, L. Raymond, ed. (American Society for Testing and Materials, Philadelphia, (1988) pp. 90–97.Google Scholar
  5. 5.
    G. M. Pressouyre, and F. M. Faure. Quantitative analysis of critical concentrations for hydrogen-induced cracking,ibid, in pp. 353–371.Google Scholar
  6. 6.
    L. Lielunski, R. Benenson, K. Horn, and W. A. Lanford. High sensitivity hydrogen analysis using elastic recoil,Nucl. Inst. Meth. Phys. Res. B 15:469–474 (1986).Google Scholar
  7. 7.
    D. L. Price, and K. Skold, ed.,Methods of Experimental Physics, Neutron Scattering—Part B, Vol. 23 (Academic Press, 1987), pp. 131–186.Google Scholar
  8. 8.
    B. J. Heuser, J. S. King, G. C. Summerfield, F. Boue, and J. E. Epperson, SANS measurements of deuterium trapping at dislocations and grain boundaries in palladium,Acta Metall. Mater. 39(11):2815–2824 (1991).Google Scholar
  9. 9.
    H. D. Carstanjen, X. Y. Huang, W. Keininger, and R. Kirchheim, A neutron scattering study of deuterium trapping by dislocations, Part 1,Zeitschrift Physik. Chem. 163 (1989).Google Scholar
  10. 10.
    W. Meyer, and W. H. Miller, Quantitative determination of hydrogen in steel by neutron scattering,Trans. Am. Nucl. Soc. 50:349–350 (1986).Google Scholar
  11. 11.
    G. W. Wu, A Monte Carlo Model for Quantitative Determination of Hydrogen in Steel by Neutron Scattering, M.S. thesis, University of Missouri, Columbia (August 1990).Google Scholar
  12. 12.
    Series #270 Spherical Detectors, LND Inc., Oceanside, New York.Google Scholar
  13. 13.
    W. H. Miller, Neutron spectroscopy in the 1–30 keV energy range,Nucl. Instr. Meth. A279:546–554 (1989).Google Scholar
  14. 14.
    P. W. Benjamin,et al., The Analysis of Recoil Proton Spectra, Atomic Weapon Research Establishment, AWRE Report No. 0968 (1968).Google Scholar
  15. 15.
    D. A. Gavin, R. E. Slovacek, and R. H. Vought, Measurements of Low Hydrogen Densities with a Notched Spectrum Technique, KAPL-M-6995 (DAG-6), Knolls Atomic Power Laboratory (March 1969).Google Scholar
  16. 16.
    J. W. Roger, Hydrogen Assay Foil Counting System, Presented to the University of Missouri Faculty and Graduate Students, Nuclear Engineering Program, Columbia, Missouri (Oct. 17, 1989).Google Scholar
  17. 17.
    W. H. Miller, R. M. Brugger, and W. Meyer, Modified notched filter technique for determining hydrogen in metals,Trans. Am. Nucl. Soc. 61:102–103 (June 1990).Google Scholar
  18. 18.
    W. H. Miller, L.-T. Lin, R. M. Brugger, and W. Meyer, Detection of PPM levels of hydrogen in solids using a modified notched neutron spectrum technique,Nucl. Technol. (accepted for publication).Google Scholar
  19. 19.
    G. S. Holister,et al., The use of modulated atomic-beam techniques for the study of space-flight problems,Planetary Space Sci. 3–4:162–168 (Feb. 1961).Google Scholar
  20. 20.
    A. Srivastava (aka Kumar), and D. Olander, Retention and release of water by uranium dioxide,Trans. Am. Nucl. Soc. 23:216 (1978).Google Scholar
  21. 21.
    D. F. Sherman, and D. R. Olander, Hydrogen dissolution in and release from nonmetals,J. Nucl. Mater. 166:307–320 (1989).Google Scholar
  22. 22.
    A. S. Kumar, Measurement of hydrogen in metals and alloys by modulated beam mass spectrometry,J. Metals (submitted).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • William H. Miller
    • 1
  • Arvind Kumar
    • 2
  • Walter Meyer
    • 3
  1. 1.University of MissouriColumbia
  2. 2.Materials Research CenterUniversity of MissouriRolla
  3. 3.Institute for Energy Research, 329 Link HallSyracuse UniversitySyracuse

Personalised recommendations