Journal of Nondestructive Evaluation

, Volume 1, Issue 3, pp 149–155 | Cite as

On the acoustic emission due to the fracture of brittle inclusions

  • L. R. F. Rose
Article

Abstract

The far-field characteristics of the emission from a theoretical model for the fracture of brittle inclusions are presented in detail. The model is a circular crack growing at constant speed from zero size until it attains a prescribed size. The far-field radiation pattern is the same as that of a simple combination of force doublets, and some qualitative similarities between force doublets and acoustic dipoles are noted. The initial shape of the far-field pulses due to the growing stage and the stopping is determined, but difficulties arise in accounting for the diffraction of a surface wave on the crack faces generated by the stopping of the crack.

Key words

acoustic emission fracture NDE 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Madariaga,Bull. Seism. Soc. Am. 66 639–666 (1976).Google Scholar
  2. 2.
    R. Madariaga,Geophys. J. Roy. Astron. Soc. 51 625–651 (1977).Google Scholar
  3. 3.
    R. Madariaga, inFracture Mechanics, R. Burridge, ed., Proc. Symp. appl. Math., Vol. 12 (SIAM-AMS, 1979).Google Scholar
  4. 4.
    J. D. Achenbach and J. G. Harris,J. Appl. Mech. 46 107–112 (1979).Google Scholar
  5. 5.
    L. R. F. Rose,Int. J. Fracture 17, No. 1 (1981).Google Scholar
  6. 6.
    H. N. G. Wadley and C. B. Scruby,Acta Met. 27:613–625 (1979).Google Scholar
  7. 7.
    C. B. Scruby, H. N. G. Wadley, and J. E. Sinclair, inPeriodic Inspection of Pressurized Components (Inst. Mech. Eng., Conf. Publ. No. 4, 1979).Google Scholar
  8. 8.
    R. Burridge and L. Knopoff,Bull. Seism. Soc. Am. 54:1875–1888 (1964).Google Scholar
  9. 9.
    H. N. G. Wadley and C. B. Scruby,Metal Sci. 12:285–289 (1978).Google Scholar
  10. 10.
    G. Clark and J. F. Knott,Metal Sci. 11:531–536 (1977).Google Scholar
  11. 11.
    A. E. H. Love,A Treatise on the Mathematical Theory of Elasticity, 4th ed., §212 (Cambridge University Press, 1927; Dover reprint, 1944).Google Scholar
  12. 12.
    J. D. Achenbach,Wave Propagation in Elastic Solids (North-Holland, Amsterdam, 1973), Chap. 5.Google Scholar
  13. 13.
    C. L. Pekeris and H. Lifson,J. Acoust. Soc. Am. 29:1233–1238 (1957).Google Scholar
  14. 14.
    L. R. F. Rose,Int. J. Fracture 12:799–813 (1976).Google Scholar
  15. 15.
    B. V. Kostrov,J. Appl. Math. Mech. (transl. P.M.M.)28:793–803 (1964).Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • L. R. F. Rose
    • 1
  1. 1.Aeronautical Research LaboratoriesMelbourneAustralia

Personalised recommendations