Journal of Nondestructive Evaluation

, Volume 8, Issue 1, pp 1–12 | Cite as

Acoustic emission from crack growth in an advanced zirconia refractory under thermal shock

  • Krzysztof J. Konsztowicz
  • Denise Fontaine


Crack initiation and growth during the thermal shock tests of a partially stabilized zirconia advanced refractory were investigated by the analysis of acoustic emission (AE) amplitudes. The growth of cracks that were detected by AE was systematically monitored by SEM observations as increasingly severe thermal shocks were applied. The measurements of strength loss after thermal cycling in the ribbon test with various applied temperature differentials correlated with continuous monitoring by acoustic emission and confirmed the effects of microcrack growth on the resistance to thermal shock damage.

Key words

crack growth thermal shock acoustic emission amplitude distributions ribbon test advanced zirconia refractory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. L. Dunegan, D. O. Harris, and C. A. Tatro, Fracture analysis by use of acoustic emission,Eng. Fract. Mech. 1:105–122 (1968).Google Scholar
  2. 2.
    W. Swindelhurst, Acoustic emission—1. Introduction,Nondestr. Testing, (June):152–158 (1973).Google Scholar
  3. 3.
    A. A. Pollock, Acoustic emission amplitude distributions, inInternational Advances in Nondestructive Testing (Gordon and Breach, Science Publishers, 1981), Vol. 7, pp. 215–239.Google Scholar
  4. 4.
    G. Curtis, Acoustic emission—4. Spectral analysis of acoustic emission.Nondestr. Testing 82–91 (1979).Google Scholar
  5. 5.
    H. N. G. Wadley, C. B. Scruby, and J. H. Speake, Acoustic emission for physical examination of metals,Int. Met. Rev. 249 (2):61–69 (1980).Google Scholar
  6. 6.
    Ono Kanji, ed.,Fundamentals of Acoustic Emission, Proceedings of the Joint Meeting of the Acoustics Society of America and Japan, Honolulu, Hawaii, Nov. 27–Sec. 1, 1978.Google Scholar
  7. 7.
    Acoustic Emission, STP 505,Am. Soc. Testing Mater. (1972).Google Scholar
  8. 8.
    J. J. Schuldies, The acoustic emission response of mechanically stressed ceramics,Mater. Eval. 209–213 (1973).Google Scholar
  9. 9.
    L. J. Graham and G. A. Alers, Investigation of Acoustic Emission from Ceramic Materials, N. A. Rockwell Science Center, Final Report, Naval Air Systems Command, Contract No. N00019-171-C-0344, May 1972.Google Scholar
  10. 10.
    L. J. Graham and G. A. Alers, Acoustic Emissions from Polycrystalline Ceramics, N. A. Rockwell Science Center, Final Report, Naval Air System Command, Contract No. N00019-72-C-0382, Dec. 1972.Google Scholar
  11. 11.
    M. J. Noone and R. L. Mehan, Observation of crack propagation in polycrystalline ceramics and its relationship to acoustic emission, inFract. Mech. of Ceramics, R. C. Bradt, D. P. H. Hasselman, and F. F. Lange, eds. (Plenum Press, New York, 1974), Vol. 1.Google Scholar
  12. 12.
    A. G. Evans, M. Linzer, and L. R. Russel, Acoustic emission and crack propagation in polycrystalline alumina,Mater. Sci. Eng. 15:253–261 (1976).Google Scholar
  13. 13.
    A. G. Evans and M. Linzer, Failure prediction in structural ceramics using acoustic emission,J. Am. Cer. Soc. 56(11):575–581 (1973).Google Scholar
  14. 14.
    A. G. Evans, S. M. Wiederhorn, M. Linzer, and E. R. Fuller, Jr., Proof testing of porcelain insulators and application of acoustic emission,Am. Cer. Soc. Bull. 59(6):576–580 (1975).Google Scholar
  15. 15.
    K. R. McKinney, H. H. Chaskelis, and S. W. Freiman, Prediction of flow sizes from acoustic emission measurements in ceramics,J. Am. Cer. Soc. 56(7–8):369–370 (1976).Google Scholar
  16. 16.
    B. J. Dalgleish, J. Fakhr, P. L. Pratt, and R. D. Rawlings, Fracture toughness of alumina,Ber. Dt. Keram, Ges. 55(12):511–514 (1978).Google Scholar
  17. 17.
    N. Ounezar, D. Rouby, and G. Fantozzi, Application of acoustic emission to study of thermomechanical behaviour of ceramic materials (in French),Rev. Int. Hautes Tempér,19:239–253 (1982).Google Scholar
  18. 18.
    T. M. Pickup, R. G. Cooke, and B. McEnaney, Acoustic emission, sub-critical events and failure of heterogenous ceramics and nuclear graphites,Sci. Cer. 12:523–527 (1983).Google Scholar
  19. 19.
    T. Kishi, S. Wakayama, and S. Kohara, Microfracture process during fracture toughness testing in Al2O3 ceramics evaluated by AE source characterisation, inFract. Mech. of Ceramics, P. C. Bradt, A. G. Evans, D. P. H. Hasselman, and F. F. Lange, eds. (Plenum Press, New York/London, 1986), Vol. 8, pp. 85–100.Google Scholar
  20. 20.
    D. M. Romrell and L. R. Bunnell, Monitoring of crack growth in ceramics by acoustic emission.Mater. Eval. 28(12):267–276 (1970).Google Scholar
  21. 21.
    J. J. Schuldies, Surface evaluation using acoustic emission,Fract. Mech. of Ceramics, R. C. Bradt, D. P. H. Hasselman, and F. F. Lange, eds. (Plenum Press, New York, 1974), pp. 189–200.Google Scholar
  22. 22.
    A. G. Evans, M. Linzer, H. Johnson, D. P. H. Hasselman, and M. E. Kipp, Thermal fracture studies in ceramic systems using an acoustic emission technique,J. Mater. Sci. 10:1608–1615 (1975).Google Scholar
  23. 23.
    F. J. Esper and H. M. Wiedenmann, Thermal shock resistance of ceramics determined by acoustic emission analysis,Ber. Dt. Keram. Ges. 55(12):507–510 (1978).Google Scholar
  24. 24.
    N. Ounezar, D. Rouby, P. Fleischmann, and G. Fantozzi, The acoustic emission study of thermal shock resistance and thermal fatigue of ceramic materials (in French),Sci. Cer. 12:563–568 (1983).Google Scholar
  25. 25.
    H. Schiliales, W. Storch, and H. Scholze, Determination of spalling resistance of sintered alumina in acoustic emission analysis,Ber. Dt. Keram. Ges. 58:25–28 (1981).Google Scholar
  26. 26.
    R. S. Williams and E. M. Anderson, AE Characterization of Monolithic Refractories, American Society for Nondestructive Testing, 37th National Fall Conference, 1977.Google Scholar
  27. 27.
    M. Kumagai and R. Uchimura,Evaluation of Thermal Shock Resistance of Refractories by Using Acoustic Emission Technique (Taikabutsu Overseas, 1982), Vol. 2, No. 2, pp. 22–27.Google Scholar
  28. 28.
    E. Lillo and J. C. Lenain, Characterization of Thermal Shock Resistance of Refractory Materials by Acoustic Emission (in French), L'Industrie Céramique No. 761, 5/82, pp. 357–364.Google Scholar
  29. 29.
    D. P. H. Hasselman, Unified theory of thermal shock fracture initiation and crack propagation of brittle ceramics.J. Am. Cer. Soc. 52(11):600–604 (1969).Google Scholar
  30. 30.
    D. P. H. Hasselman, Thermal shock resistance of engineering ceramics.Mater. Sci. Eng. 71:251–269 (1985).Google Scholar
  31. 31.
    C. E. Semler and T. H. Hawisher, Evaluation of the thermal shock resistance of refractories using the ribbon test method,Am. Cer. Soc. Bull. 59(7):732–738 (1980).Google Scholar
  32. 32.
    G. Ziegler, in R. W. Davidge, ed.,Thermal Cycling Behaviour of Reaction Bonded Silicon Nitride and Some Microstructural Effects, Proceedings of the British Ceramics Society, No. 32, March 1982.Google Scholar
  33. 33.
    D. Maugis, Subcritical crack growth, surface energy and fracture toughness of brittle materials, inFract. Mech. of Ceramics, R. C. Bradt, A. G. Evans, D. P. H. Hasselman, and F. F. Lange, eds. (Plenum Press, New York/London, 1986), Vol. 8, pp. 255–272.Google Scholar
  34. 34.
    G. A. Gogotsi and A. N. Negovski,Evaluation of Ceramic Fracture Caused by Thermal Shock, Proceedings of the Sixth International Conference on Fracture (ICF), New Delhi, India, 1984 (Pergamon Press, Oxford, N.Y. 1984), Vol. 4, pp. 2701–2709.Google Scholar
  35. 35.
    S. M. Wiederhorn, Subcritical crack growth in ceramics, inFract. Mech. of Ceramics, R. C. Bradt, D. P. H. Hasselman, and F. F. Lange, eds. (Plenum Press, New York, 1974), Vol. 2.Google Scholar
  36. 36.
    P. F. Becher, D. Lewis, III, K. R. Carman, and A. G. Gonzalez, Thermal shock resistance of ceramics: Size and geometry effect in quench tests,Am. Cer. Soc. Bull. 59(5):592–598 (1980).Google Scholar
  37. 37.
    P. F. Becher, Effect of water bath temperature on the thermal shock of Al2O3,J. Am. Cer. Soc. (Jan):c17–c19 (1981).Google Scholar
  38. 38.
    J. P. Singh, Y. Tree, and D. P. H. Hasselman, Effect of bath and specimen temperature on the thermal stress resistance of brittle ceramics subjected to thermal quenching,J. Mater. Sci. 16:2109–2118 (1981).Google Scholar
  39. 39.
    W. P. Rogers, A. F. Emery, R. C. Bradt, and A. S. Kobayashi, Statistical study of thermal fracture of ceramic materials in the water quench test,J. Am. Cer. Soc. 70(6):406–412 (1987).Google Scholar
  40. 40.
    A. G. Evans, Structural reliability: A processing-dependent phenomenon,J. Am. Cer. Soc. 65(3):127–137 (1982).Google Scholar
  41. 41.
    J. Homeny and R. C. Bradt. Thermal shock of refractories, inStresses in Severe Environments, D. P. H. Hasselman and R. A. Heller, eds. (Plenum, 1980), pp. 343–363.Google Scholar
  42. 42.
    D. Lewis, III, Thermal shock and thermal shock fatigue testing of ceramics with the water quench test, inFracture Mechanics of Ceramics, R. C. Bradt, D. P. H. Hasselman, F. F. Lange, and A. G. Evans, eds. (Plenum, 1980), Vol. 6, pp. 487–496.Google Scholar
  43. 43.
    D. Lewis, III and R. W. Rice, Comparison of static cyclic and thermal shock fatigue in ceramic composites,Cer. Eng. Sci. Proc. 3 (Sept.–Oct.):714–721 (1982).Google Scholar
  44. 44.
    J. H. Ainsworth and R. H. Herron, Thermal shock resistance of refractories,Am. Cer. Soc. Bull. 53(7):533–538 (1974).Google Scholar
  45. 45.
    C. E. Semler and R. C. Bradt, Thermal shock damage of magnesite chrome refractories in the ribbon test,Am. Cer. Soc. Bull. 63(4):605–610 (1984).Google Scholar
  46. 46.
    M. B. Bever, ed., Thermal shock in ceramics, inEncyclopedia of Materials Science and Engineering (Pergamon Press, 1986), pp. 4953–4955.Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • Krzysztof J. Konsztowicz
    • 1
  • Denise Fontaine
    • 2
  1. 1.National Research Council of CanadaHalifax
  2. 2.Ecole Polytechnique de Montréal

Personalised recommendations