Journal of Materials Science

, Volume 10, Issue 4, pp 697–704 | Cite as

The determination of the demagnetization factor resulting from shape anisotropy in ferrite magnets

  • Lynn J. Brady


The energy equation which yields the expression,Hci=0.48[2K1/Ms−4πM s ], for the intrinsic coercive force of BaFe12O19 has been used as the basis for numerous investigations. There is reason to believe, however, that the term, 4π, in this expression should be replaced by 2π. To settle this question, the energy equation is resolved to obtain expressions for both the easy and hard directions of magnetization. The resultant equations are used to establish a procedure for the determination of the demagnetization factor resulting from shape anisotropy in ferrite magnets.

A related method is introduced to calculate the saturation magnetization of ferrite magnets. It is demonstrated thatMs values derived by means of this procedure deviate from single-crystal values by ±4 parts per thousand, maximum. This method uses magnetic measurements made in the field,Ha=HA/2 for both the hard and easy directions of magnetization.

The evidence obtained leads to the conclusion that,Hci=0.48[2K1/Ms−2πMsc], for the Stoner-Wohlfarth spherical model.


Polymer Anisotropy Ferrite Saturation Magnetization Numerous Investigation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. A. Hutner, Fourth Progress Report, Signal Corps Project No. 32-2005K (1953).Google Scholar
  2. 2.
    J. Smit andH. P. J. Wijn, “Ferrites” (Wiley, New York, 1959) p. 49.Google Scholar
  3. 3.
    Idem, ibid p. 4.Google Scholar
  4. 4.
    C. D. Mee andJ. C. Jeschke,J. Appl. Phys. 34 (1963) 1271.Google Scholar
  5. 5.
    K. Haneda andH. Kojima,ibid 44 (1973) 3760.Google Scholar
  6. 6.
    Lynn J. Brady,J. Mater. Sci. 8 (1973) 993.Google Scholar
  7. 7.
    B. T. Shirk andW. R. Buessem,J. Appl. Phys. 40 (1969) 1294.Google Scholar
  8. 8.
    K. H. Stewart, “Ferromagnetic Domains” (Cambridge University Press, 1954) pp. 24, 27.Google Scholar
  9. 9.
    Richard M. Bozorth, “Ferromagnetism” (Van Nostrand, New York, 1953) p. 846.Google Scholar
  10. 10.
    J. Smit andH. P. J. Wijn, “Ferrites” (Wiley, New York, 1959) p. 237.Google Scholar
  11. 11.
    Allan H. Morrish, “The Physical Principles of Magnetism” (Wiley, New York, 1965) p. 345.Google Scholar
  12. 12.
    E. C. Stoner andE. P. Wohlfarth,Phil. Trans. Roy. Soc., London 240A (1948) 599.Google Scholar
  13. 13.
    Walter S. Blume, Jun., U.S. Patent 2 999 275, 12 September, 1961.Google Scholar
  14. 14.
    M. P. Lanoevin,J. Physique 4 (1905) 678.Google Scholar
  15. 15.
    J. J. Went, G. W. Rathenau, E. W. Gorter, andGoogle Scholar
  16. 16.
    G. W. Van Oosterhout,Philips Tech. Rev. 13 (1951/1952) 194, as cited byJ. Smit andH. P. J. Wijn, “Ferrites”, p. 204.Google Scholar
  17. 17.
    J. Smit andH. P. J. Wijn, “Ferrites” (Wiley, New York, 1959) p. 189.Google Scholar
  18. 17a.
    Idem, ibid, p. 47.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1975

Authors and Affiliations

  • Lynn J. Brady
    • 1
  1. 1.CTS CorporationElkhartUSA

Personalised recommendations