Advertisement

Journal of Materials Science

, Volume 10, Issue 4, pp 661–668 | Cite as

The nature of yielding and plastic deformation in rubber-modified polystyrene

Papers

Abstract

Obliquely grooved sheet samples of high-impact polystyrene were used to establish conditions that lead to the early stage of plastic deformation under combined-stress loading conditions. By applying the plasticity theory and the method proposed by Hill to the thermoplastic, it was demonstrated that the basis for relating incremental strain rate with the corresponding deviatoric stress could be established. Yielding under the combined-stress loading condition was also shown to be strongly dependent on the sign of stress. Some insight into the asymmetric yielding behaviour was gained by determining the density and orientation dependence of crazes around the rubber-modified particles. It was shown that the process of craze initiation depended on the prevailing stress state and did not follow the stress or strain criterion. Based on the testing method used, a simple procedure of predicting sheet drawability is outlined.

Keywords

Polymer Stress State Plastic Deformation Polystyrene Load Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. B. Bowden, “The Physics of Glassy Polymers”, edited by R. N. Haward, (Wiley, New York, 1973) p. 321.Google Scholar
  2. 2.
    I. M. Ward,J. Mater. Sci. 6 (1971) 1397.Google Scholar
  3. 3.
    N. H. Tschoegl, Polymer Sci. Sym. No. 32 (Wiley, 1971) p. 239.Google Scholar
  4. 4.
    R. L. Thorkildsen, General Electric Co. Report No. 62GL48, General Electric Co, Schenectady, N.Y., 1962.Google Scholar
  5. 5.
    W. Whitney andR. D. Andrews,J. Polymer Sci. C 16 (1967) 2981.Google Scholar
  6. 6.
    P. B. Bowden andJ. A. Jukes,J. Mater. Sci. 3 (1968) 183.Google Scholar
  7. 7.
    A. S. Argon, R. D. Andrews, J. A. Godrick andW. Whitney,J. Appl. Phys. 39 (1968) 1899.Google Scholar
  8. 8.
    J. C. Bauwens,J. Polymer Sci. A-2 8 (1970) 893.Google Scholar
  9. 9.
    R. N. Haward, B. M. Murphy andE. F. T. White,ibid 9 (1971) 801.Google Scholar
  10. 10.
    P. B. Bowden,J. Mater. Sci. 7 (1972) 52.Google Scholar
  11. 11.
    R. S. Raghava, R. M. Caddell andG. S. Y. Yeh,ibid 8 (1973) 225.Google Scholar
  12. 12.
    N. Brown, R. A. Duckett andI. M. Ward,Phil. Mag. 18 (1968) 483.Google Scholar
  13. 13.
    I. M. Ward, “Mechanical Properties of Solid Polymers” (Interscience, New York, 1971) p. 225.Google Scholar
  14. 14.
    R. M. Caddell, R. S. Raghava andA. G. Atkins,J. Mater. Sci. 8 (1973) 1641.Google Scholar
  15. 15.
    A. S. Argon,J. Macromol. Sci.-Phys. B8 (1973) 573.Google Scholar
  16. 16.
    D. Lee andW. A. Backofen,Trans. Met. Soc. AIME 236 (1966) 1696.Google Scholar
  17. 17.
    R. Hill,J. Mech. Phys. Solids 1 (1953) 271.Google Scholar
  18. 18.
    B. B. Hundy andA. P. Green,ibid 3 (1954) 16.Google Scholar
  19. 19.
    G. Lianis andH. Ford,ibid 5 (1957) 215.Google Scholar
  20. 20.
    J. P. Ellington,ibid 6 (1958) 276.Google Scholar
  21. 21.
    M. Higuchi andH. Hyakutake,Res. Inst. Appl. Mechanics Rep., Kyushu University, Japan 16 (1968) 265.Google Scholar
  22. 22.
    A. Nadi, “Theory of Flow and Fracture of Solids”, Vol. I (McGraw-Hill, New York, 1950) p. 319.Google Scholar
  23. 23.
    C. B. Bucknall,J. Mat. 4 (1969) 214.Google Scholar
  24. 24.
    C. B. Bucknall, D. Clayton andW. Keast,J. Mater. Sci. 8 (1973) 514.Google Scholar
  25. 25.
    J. M. Powers andR. M. Caddell,Polymer Eng. Sci. 12 (1972) 432.Google Scholar
  26. 26.
    C. A. Pampillo andL. A. Davis,J. Appl. Phys. 42 (1971) 4674.Google Scholar
  27. 27.
    J. G. Williams andH. Ford,J. Mech. Eng. Sci. 6 (1964) 405.Google Scholar
  28. 28.
    S. S. Sternstein andL. Ongchin,Amer. Chem. Soc. Polymer Preprints 10 (1969) 1117.Google Scholar
  29. 29.
    R. P. Kambour,J. Polymer Sci. Macromol. Rev. 7 (1973) 1.Google Scholar
  30. 30.
    T. E. Brady andG. S. Y. Yeh,J. Mater. Sci. 8 (1973) 1083.Google Scholar
  31. 31.
    D. Lee andJ. G. Vacca, to be published.Google Scholar
  32. 32.
    R. L. Whiteley,Trans. ASM 52 (1960) 154.Google Scholar
  33. 33.
    W. A. Backofen, “Deformation Processing” (Addison-Wesley, Reading, Massachusetts, 1972) p. 236.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1975

Authors and Affiliations

  • D. Lee
    • 1
  1. 1.Corporate Research and DevelopmentGeneral Electric CompanySchenectadyUSA

Personalised recommendations