Journal of Nondestructive Evaluation

, Volume 11, Issue 3–4, pp 167–174 | Cite as

Boundary integral equations for the scattering of elastic waves by elastic inclusions with thin interface layers

  • P. A. Martin
Article

Abstract

Elastic waves are scattered by an elastic inclusion. The interface between the inclusion and the surrounding material is imperfect: the displacement and traction vectors on one side of the interface are assumed to be linearly related to both the displacement vector and the traction vector on the other side of the interface. The literature on such inclusion problems is reviewed, with special emphasis on the development of interface conditions modeling different types of interface layer. Inclusion problems are formulated mathematically, and uniqueness theorems are proved. Finally, various systems of boundary integral equations over the interface are derived.

Key words

Elastic waves interface layers inclusions boundary integral equations uniqueness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. A. Martin, Thin interface layers: adhesives, approximations and analysis, inElastic Waves and Ultrasonic Nondestructive Evaluation, S. K. Datta, J. D. Achenbach, and Y. S. Rajapakse, eds. (North-Holland, Amsterdam, 1990), pp. 217–222.Google Scholar
  2. 2.
    N. M. Newmark, C. P. Siess, and I. M. Viest, Tests and analysis of composite beams with incomplete interaction,Proc. Soc. Exp. Stress Anal. 9(175–92 (1951).Google Scholar
  3. 3.
    A. Toledano and H. Murakami, Shear-deformable two-layer plate theory with interlayer slip,Proc. ASCE, J. Eng. Mech. 114604–623 (1988).Google Scholar
  4. 4.
    G. S. Murty, A theoretical model for the attenuation and dispersion of Stoneley waves at the loosely bonded interface of elastic half spaces,Phys. Earth Planet. Interiors 1165–79 (1975).Google Scholar
  5. 5.
    A. R. Banghar, G. S. Murty, and I. V. V. Raghavacharyulu, On the parametric model of loose bonding of elastic half spaces,J. Acoust. Soc. Am. 601071–1078 (1976).Google Scholar
  6. 6.
    J. P. Jones and J. S. Whittier, Waves at a flexibly bonded interface,J. Appl. Mech. 34905–909 (1967).Google Scholar
  7. 7.
    M. Schoenberg, Elastic wave behavior across linear slip interfaces,J. Acoust. Soc. Am. 681516–1521 (1980).Google Scholar
  8. 8.
    S. Chonan, Vibration and stability of a two-layered beam with imperfect bonding,J. Acoust. Soc. Am. 72208–213 (1982).Google Scholar
  9. 9.
    Y. C. Angel and J. D. Achenbach, Reflection and transmission of elastic waves by a periodic array of cracks,J. Appl. Mech. 5233–41 (1985).Google Scholar
  10. 10.
    A. K. Mal, Guided waves in layered solids with interface zones,Int. J. Eng. Sci. 26873–881 (1988).Google Scholar
  11. 11.
    A. K. Mal and P. C. Xu, Elastic waves in layered media with interface features, inElastic Wave Propagation, M. F. McCarthy and M. A. Hayes, eds. (North-Holland, Amsterdam, 1989), pp. 67–73.Google Scholar
  12. 12.
    A. Pilarski and J. L. Rose, A transverse-wave ultrasonic oblique-incidence technique for interfacial weakness detection in adhesive bonds,J. Appl. Phys. 63300–307 (1988).Google Scholar
  13. 13.
    G. Persson and P. Olsson, 2-D elastodynamic scattering from a semi-infinite cracklike flaw with interfacial forces,Wave Motion 1321–41 (1991).Google Scholar
  14. 14.
    Z. L. Li and J. D. Achenbach, Reflection and transmission of Rayleigh surface waves by a material interphase,J. Appl. Mech. 58688–694 (1991).Google Scholar
  15. 15.
    A. Klarbring, Derivation of a model of adhesively bonded joints by the asymptotic expansion method,Int. J. Eng. Sci. 29493–512 (1991).Google Scholar
  16. 16.
    J. Baik and R. B. Thompson, Long wavelength elastic scattering from a planar distribution of inclusions,J. Appl. Mech. 52974–976 (1985).Google Scholar
  17. 17.
    J. M. Baik and R. B. Thompson, Ultrasonic scattering from imperfect interfaces: A quasi-static model,J. Nondestr. Eval. 4177–196 (1984).Google Scholar
  18. 18.
    L. M. Brekhovskikh,Waves in Layered Media (Academic Press, New York, 1980); 2nd Ed.Google Scholar
  19. 19.
    S. Rokhlin, M. Hefets, and M. Rosen, An elastic interface wave guided by a thin film between two solids,J. Appl. Phys. 513579–3582 (1980).Google Scholar
  20. 20.
    S. I. Rokhlin and Y. J. Wang, Analysis of boundary conditions for elastic wave interaction with an interface between two solids,J. Acoust. Soc. Am. 89503–515 (1991).Google Scholar
  21. 21.
    V. D. Kupradze, T. G. Gegelia, M. O. Basheleishvili, and T. V. Burchuladze,Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity (North-Holland, Amsterdam, 1979).Google Scholar
  22. 22.
    T. Mura,Micromechanics of Defects in Solids, (Martinus Nijhoff, Dordrecht, 1987); 2nd Ed.Google Scholar
  23. 23.
    P. A. Martin, On the scattering of elastic waves by an elastic inclusion in two dimensions,Quart. J. Mech. Appl. Math. 43275–291 (1990).Google Scholar
  24. 24.
    S. K. Datta and H. M. Ledbetter, Effect of interface properties on wave propagation in a medium with inclusions, inMechanics of Material Interfaces, A. P. S. Selvadurai and G. Z. Voyiadjis, eds. (Elsevier, Amsterdam, 1986), pp. 131–141.Google Scholar
  25. 25.
    R. Paskaramoorthy, S. K. Datta, and A. H. Shah, Effect of interface layers on scattering of elastic waves,J. Appl. Mech. 55871–878 (1988).Google Scholar
  26. 26.
    A. K. Mal and S. K. Bose, Dynamic elastic moduli of a suspension of imperfectly bonded spheres,Proc. Camb. Phil. Soc. 76587–600 (1974).Google Scholar
  27. 27.
    F. Lene and D. Leguillon, Homogenized constitutive law for a partially cohesive composite material,Int. J. Solids Struct. 18443–458 (1982).Google Scholar
  28. 28.
    F. Santosa and W. W. Symes, A model for a composite with anisotropic dissipation by homogenization,Int. J. Solids Struct. 25381–392 (1989).Google Scholar
  29. 29.
    J. Aboudi, Damage in composites—modeling of imperfect bonding,Composites Sci. Tech. 28103–128 (1987).Google Scholar
  30. 30.
    J. Aboudi, Wave propagation in damaged composite materials,Int. J. Solids Struct. 24117–138 (1988).Google Scholar
  31. 31.
    M. Kitahara, K. Nakagawa, and J. D. Achenbach, On a method to analyze scattering problems of an inclusion with spring contracts, inBoundary Element Methods in Applied Mechanics, M. Tanaka and T. A. Cruse, eds. (Pergamon, Oxford, 1988), pp. 239–244.Google Scholar
  32. 32.
    Z. Hashin, Composite materials with interphase: Thermoelastic and inelastic effects, inInelastic Deformation of Composite Materials, G. J. Dvorak, ed. (Springer, New York, 1991), pp. 3–34.Google Scholar
  33. 33.
    S. K. Datta, H. M. Ledbetter, Y. Shindo, and A. H. Shah, Phase velocity and attenuation of plane elastic waves in a particle-reinforced composite medium,Wave Motion 10171–182 (1988).Google Scholar
  34. 34.
    S. K. Datta, P. Olsson, and A. Boström, Elastodynamic scattering from inclusions with thin interface layers, inWave Propagation in Structural Composites, A. K. Mal and T. C. T. Ting, eds. (ASME, New York, 1988), pp. 109–116.Google Scholar
  35. 35.
    P. Olsson, S. K. Datta, and A. Boström, Elastodynamic scattering from inclusions surrounded by thin interface layers,J. Appl. Mech. 57672–676 (1990).Google Scholar
  36. 36.
    A. H. Nayfeh and E. A. M. Nassar, Simulation of the influence of bonding materials on the dynamic behavior of laminated composites,J. Appl. Mech. 45822–828 (1978).Google Scholar
  37. 37.
    D. S. Jones, Low-frequency scattering by a body in lubricated contact,Quart. J. Mech. Appl. Math. 36111–138 (1983).Google Scholar
  38. 38.
    A. C. Eringen and E. S. Suhubi,Elastodynamics, (Academic Press, New York, 1975), Vol. II.Google Scholar
  39. 39.
    R. H. Rand, Torsional vibrations of elastic prolate spheroids,J. Acoust. Soc. Am. 44749–751 (1968).Google Scholar
  40. 40.
    T. Hargé, Valeurs propres d'un corps élastique,C. R. Acad. Sci. Paris, Série I 311857–859 (1990).Google Scholar
  41. 41.
    N. I. Muskhelishvili,Singular Integral Equations (Noordhoff, Groningen, 1953).Google Scholar
  42. 42.
    T. S. Angell, R. E. Kleinman, and F. Hettlich, The resistive and conductive problems for the exterior Helmholtz equation,SIAM J. Appl. Math. 501607–1622 (1990).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • P. A. Martin
    • 1
  1. 1.Department of MathematicsUniversity of ManchesterManchesterEngland

Personalised recommendations