Advertisement

Journal of Nondestructive Evaluation

, Volume 9, Issue 2–3, pp 81–99 | Cite as

Computer simulation of ultrasonics and its applications

  • K. Harumi
  • M. Uchida
Article

Abstract

Numerical calculations have been carried out for about 20 years, and the results are demonstrated graphically by vector or lattice representations. These results are now being used mainly for clarifying the mechanisms of ultrasonic interaction with material and defects and checking and improving the experimental results. Parts of this paper review results, many involving cracktip diffraction in various geometries, which have been published mainly in conference proceedings and have not appeared in journals. Other parts, dealing with focused fields, focal lenses, and radiation in an anisotropic medium are new, and have not appeared even as conference papers.

Key words

Ultrasonics visualization simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Harumi, F. Suzuki, and Y. Sato, Computer Simulation of the Near Field of Elastic Wave in a Solid Half Space, Report Technical Committee 2 (Ultrasonics) in NDT Japan, No. 2411 (1971) (in Japanese).Google Scholar
  2. 2.
    Z. S. Altermann and A. Rotenberg, Seismic waves in a quarter plane,Bull. Seismol. Soc. Am. 59:347 (1969).Google Scholar
  3. 3.
    V. Avanessian, Steady Response of an Axisymmetric Body to Oblique Incident Seismic Waves, Proc. Intern. Conf. Comp. Mech., Tokyo, Vol. 2, IX-61 (1986).Google Scholar
  4. 4.
    K. Harumi, Computer simulation of ultrasonics in a solid.NDT Int. 19(5):315 (1986).Google Scholar
  5. 5.
    K. Harumi, T. Igarashi, and T. Saito, Computer simulation of elastic wave by a new model of mass particles system with potentials,J. Japan NDT Soc. 27:807(1978)(in Japanese).Google Scholar
  6. 6.
    A. Ootsuki and K. Harumi, Effect of topography and sub-Surface inhomogeneities on seismic SV waves,Eng. Struct. Dynam. 11:441 (1983).Google Scholar
  7. 7.
    A. Ohtsuki and K. Harumi, Mechanism of wave propagation around large cavern due to SV wave-discussion,Proc. Japan Soc. Civil Engineers 356:587 (1985) (in Japanese).Google Scholar
  8. 8.
    H. L. Wong, Diffraction of P, SV, and Rayleigh Waves by Surface Topographies, Report no. CE 79-05, Los Angeles, California (1979).Google Scholar
  9. 9.
    K. Harumi, K. Date, M. Uchida, and H. Shimada, Comparison of numerical ultrasonic imaging with photoelastic imaging.J. Japan NDT Soc. 37(7):552 (1988) (in Japanese).Google Scholar
  10. 10.
    K. Date, K. Kikuchi, and H. Shimada, Visualization of ultrasonic wave interaction with defect by stroboscopic photoelasticity,J. Japan NDT Soc. 35(2A):150 (1986).Google Scholar
  11. 11.
    M. G. Silk, Sizing crack-like defects by ultrasonic means, inResearch Techniques in Nondestructive Testing (Academic Press, (1977), Vol. 3, p. 51.Google Scholar
  12. 12.
    D. De Vadder, M. G. Silk, and D. Bouami, A review of knowledge about the diffraction of ultrasound by crack tips, inMechanical Behavior of Materials (1988).Google Scholar
  13. 13.
    K. Harumi, S. Ogura, M. Uchida, and T. Miyajima, Tip Echo Method in Japan, Proc. 12th World Conf., p. 279 (1989).Google Scholar
  14. 14.
    T. Fuji, Y. Ootsuki, and I. Kato, Ultrasonic testing of partial penetration weld,J. Japan NDT Soc. 21(9):564 (1972) (in Japanese).Google Scholar
  15. 15.
    K. Harumi, Y. Ogura, and M. Uchida, eds., Tip Echo Working Group of Japan NDT Soc. Ultrasonic defect sizing (translated by M. Moles and N. Miura),J. Japan NDT Soc. (1989).Google Scholar
  16. 16.
    Y. Aikawa and M. Nakayama, Effect of flaw tip line tilting angles, flaw tip surface tilting angle, and flaw tip widths on the crack size determination by tip echo method,J. Japan NDT Soc. 32(9):730(1983) (in Japanese).Google Scholar
  17. 17.
    K. Harumi, Computer simulation of ultrasonics in a solid,NDT Int 19(5):315 (1986).Google Scholar
  18. 18.
    K. Date, H. Shimada, and S. Tsushima, Effects of crack tip diameter on the reflection and diffraction of elastic wave at crack tip,J. Japan NDT Soc. 33(9):666 (1984) (in Japanese).Google Scholar
  19. 19.
    Y. Aikawa and M. Nakaayama, Some Properties of Shear Wave Pipe Echo, Report Technical Committee 2 (Ultrasonics), NDT Japan, No. 21052 (1985) (in Japanese).Google Scholar
  20. 20.
    I. Nanai, H. Okada, et al., Improved Testing Technique on Shrink Fit Part, Proc. Generator Retaining Ring Workshop, EPRI (1987).Google Scholar
  21. 21.
    K. Date and Y. Udagawa, Visualization and Evaluation of Ultrasonic Wave Stress by Stroboscopic Photoelasticity and Image-Processing Techniques, Proc. 12th WCNDT, p. 242 (1989).Google Scholar
  22. 22.
    H. U. Li, and K. Negishi, Visualization of ultrasonic waves propagaing in scanning acoustic microscope,Proc. Acoust. Imaging 17:79 (1988).Google Scholar
  23. 23.
    Y. Ogura, Private communication.Google Scholar
  24. 24.
    Y. Ogura and Y. Suzuki, Echo characteristic and application of leaky SAW in ceramics,J. Japan NDT Soc. 36(2A):140 (1987) (in Japanese).Google Scholar
  25. 25.
    K. Harumi, H. Okada, A. Ohtsuki, and M. Uchida, Clarification of mechanism of elastic waves using graphic representation,Proc. IEEE Ultrasonic Symp. 395 (1987).Google Scholar
  26. 26.
    N. Onozawa and Y. Ishii, Experiment on Reflection of Ultrasonic Wave by Rough Surfaces, Report Technical Committee 2 (Ultrasonics), NDT Japan, No. 2853 (1981) (in Japanese).Google Scholar
  27. 27.
    M. Takahashi and K. Harumi, Fundamental Experiments of Reflections by Surface Steps and Cracks, Proc. 11th WCNDT, p. 934 (1985).Google Scholar
  28. 28.
    M. Takahashi and S. Saitoo, The Groove Depth and Its Echo Height in Angle Beam Testing, Report Technical Committee 2 (Ultrasonics), NDT Japan, No. 2806 (1980) (in Japanese).Google Scholar
  29. 29.
    K. Harumi, T. Saito, and M. Fujimori, Motion Picture of the Computer Simulation of Elastic Waves Generation by Transducer, Proc. 1st Symp. Ultra. Char. p. 521 (1987).Google Scholar
  30. 30.
    A. F. Gangi and R. L. Wesson, P-wave to Rayleigh-wave conversion coefficients for wedge corners; model experiments,J. Comp. Phys. 29:370 (1978).Google Scholar
  31. 31.
    N. Saffari and L. J. Bond, Body to Rayleigh wave mode-conversion at steps and slots,J. Nondestr. Eval. 6(1): (1987).Google Scholar
  32. 32.
    L. J. Bond and R. J. Blake, Methods for the computer modeling of ultrasonic waves in solids,Res. Tech. NDT 6:107–150 (1982).Google Scholar
  33. 33.
    L. J. Bond, M. Punjani, and N. Saffari, Review of some recent advances in quantitative ultrasonic NDE,Proc. IEEE Ultrasonic 1314 (Special issue):265–274 (1984).Google Scholar
  34. 34.
    G. A. Georgiou and L. J. Bond, Studies in Ultrasonic Wave-Defect Interaction, Proc. 4th Int. Symp. on Offshore Mechanics and Arctic Engineering, p. 451–460 (1985).Google Scholar
  35. 35.
    E. Langer, S. Selberherr, P. A. Markowich, and C. A. Ringhofer, Numerical analysis of acoustic wave generation anisotropic piezoelectric materials,Proc. IEEE Ultrasonic Symp. 1:350–353 (1982).Google Scholar
  36. 36.
    E. Cambiaggio and J. P. Damiano, Conversion of an acoustic surface pulse into bulk waves at a surface discontinuity,Proc. IEEE Ultrasonics Symp 1:401–404 (1982).Google Scholar
  37. 37.
    R. Ludwig and W. Lord, Developments in the finite element modeling of ultrasonic NDT phenomena,Review of Progress in Quantitative NDE, D. O. Thompson and D. E. Chimenti, eds. (Plenum, New York, 1985).Google Scholar
  38. 38.
    K. R. Chaplin, D. B. Duncan, and R. Parker, Ultrasonic computer modeling verification, Proc. 11th World Conf. on NDT, pp.1913–1919 (1985).Google Scholar
  39. 39.
    J. M. Coffey and R. K. Chapman, Application of elastic scattering theory for smooth flat cracks to the quantitative prediction of ultrasonic defect detection and sizing,Nucl. Energy 22:319–333 (1983).Google Scholar
  40. 40.
    J. A. G. Temple, European developments in theoretical modeling of NDE for pipework,Int. J. Res. Ves. and Piping 28:227–267 (1987).Google Scholar
  41. 41.
    F. Baretich, M. Certo, and G. Piazza, Some results of ultrasonic echo signal computation, CISE Report No. 2702, CISE Publication Office, Milan (1985).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • K. Harumi
    • 1
  • M. Uchida
    • 2
  1. 1.Tokyo University of Information SciencesChibaJapan
  2. 2.College of Industrial TechnologyNihon UniversityNarashino, ChibaJapan

Personalised recommendations