Advertisement

Journal of Nondestructive Evaluation

, Volume 9, Issue 2–3, pp 51–69 | Cite as

Ultrasonic reflection and guided waves in fluid-coupled composite laminates

  • D. E. Chimenti
  • Adnan H. Nayfeh
Article

Abstract

In this article, we review the present authors' own approach to elastic wave modeling and experimental measurements in fibrous composites. The materials and structural problem addressed here concerns the propagation of guided elastic leaky waves in continuous-fiber composite plates. The guided wavevector may be oriented along the fibers or in an arbitrary azimuthal direction. These plates can be structured as single-layer or multilayer media, where each successive layer contains fibers in different directions. Further, the multiaxial plates are loaded by a fluid or by different fluids on each boundary. Each of these cases has been investigated both experimentally and theoretically. It is found that some reasonable approximations lead to significant simplifications in treating these complicated structures and yet preserve the accuracy needed to make useful predictions of realistic sound wave behavior. Comparisons of the results of model calculations and experimental measurements of ultrasonic reflection show very good agreement over a wide range of experimental parameters and types of composites. Suggestions are offered at the end of the article for extensions of the modeling to account for non-ideal behavior of the materials and the chosen means of interrogation.

Key words

Composites ultrasound lamb waves leaky waves layered media 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. J. P. Musgrave,Crystal Acoustics (Holden Day, San Francisco, 1970).Google Scholar
  2. 2.
    J. L. Synge,J. Math. Phys. 25:323–334 (1957).Google Scholar
  3. 3.
    F. I. Fedorov,Theory of Elastic Waves in Crystals (Plenum, New York, 1968).Google Scholar
  4. 4.
    L. G. Merkulov and L. A. Yakovlev,Sov. Phys. Acoust. 8:72–152 (1962).Google Scholar
  5. 5.
    L. G. Merkulov,Appl. Mater. Res. 2:231 (1963).Google Scholar
  6. 6.
    M. J. P. Musgrave,Geophys. J. 3:406 (1960).Google Scholar
  7. 7.
    E. Gates,Appl. Phys. Lett. 7:187 (1965).Google Scholar
  8. 8.
    N. Joel,Proc. Phys. Soc., Sect. A 78:38 (1961).Google Scholar
  9. 9.
    E. G. Henneke, II,J. Acoust. Soc. Am. 51:210 (1972).Google Scholar
  10. 10.
    T. C. Lim and M. J. P. Musgrave,Nature 225:372 (1970).Google Scholar
  11. 11.
    P. Chadwick and P. K. Currie,Quart. J. Mech. Appl. Math. 27:497 (1974).Google Scholar
  12. 12.
    T. Kundu and K. Mal, Elastic waves in a multilayered solid due to a dislocation source,Wave Motion 7:459 (1985).Google Scholar
  13. 13.
    S. I. Rokhlin, T. K. Bolland, and L. Adler,J. Acoust. Soc. Am. 79:906 (1986).Google Scholar
  14. 14.
    R. Stoneley,Proc. Lond. Math. Soc. 232:447 (1955).Google Scholar
  15. 15.
    V. T. Buchwald,Quart. J. Mech. Appl. Math. 14:461 (1961).Google Scholar
  16. 16.
    V. T. Buchwald and A. Davis,Quart. J. Mech. Appl. Math. 16:283 (1963).Google Scholar
  17. 17.
    D. C. Gazis, R. Herman, and R. F. Wallis,Phys. Rev. 119:533 (1960).Google Scholar
  18. 18.
    F. R. Rollins, T. C. Lim, and G. W. Farnell,Appl. Phys. Lett. 12:236 (1968).Google Scholar
  19. 19.
    T. C. Lim and G. W. Farnell,J. Acoust. Soc. Am. 45:845 (1969).Google Scholar
  20. 20.
    S. A. Markus, M. D. Kaplan, and S. V. Veremeenko,Sov. J. Nondestr. Testing 21:739 (1985).Google Scholar
  21. 21.
    Zh. G. Nikiforenko, V. T. Bobrov, and I. I. Averbukh,Sov. J. Nondestr. Testing 8:543 (1972).Google Scholar
  22. 22.
    I. Abubakar,Quart. J. Mech. Appl. Math. 15:129 (1962).Google Scholar
  23. 23.
    Yu. A. Kosevich and E. S. Syrkin,Sov. Phys. Acoust. 31:365 (1985).Google Scholar
  24. 24.
    E. R. Baylis and W. A. Green,J. Sound Vibr. 110:1 (1986).Google Scholar
  25. 25.
    L. G. Merkulov and D. A. Tursonov,Sov. Phys. Acoust. 15:115 (1969).Google Scholar
  26. 26.
    L. P. Solie and B. A. Auld,J. Acoust. Soc. Am. 54:50 (1973).Google Scholar
  27. 27.
    F. C. Moon,J. Comp. Mater 6:62 (1972).Google Scholar
  28. 28.
    W. R. Rose, S. I. Rokhlin, and L. Adler, inReview of Progress in Quantitative NDE, D. O. Thompson and D. E. Chimenti, eds. (Plenum Press, New York, 1987), Vol. 6, p. 1111.Google Scholar
  29. 29.
    R. B. Thompson, S. S. Lee, and J. F. Smith,Ultrasonics 25:133 (1987).Google Scholar
  30. 30.
    K. Pister,J. Acoust. Soc. Am. 31:233 (1959).Google Scholar
  31. 31.
    S. Srinivas, C. V. Joga Rao, and A. K. Rao,J. Sound Vibr. 12:187 (1970).Google Scholar
  32. 32.
    S. V. Kulkarni and N. J. Pagano,J. Sound Vibr. 23:127 (1972).Google Scholar
  33. 33.
    D. E. Chimenti and A. H. Nayfeh,J. Appl. Phys. 58:4531 (1985).Google Scholar
  34. 34.
    D. E. Chimenti and A. H. Nayfeh, inReview of Progress in Quantitative NDE, D. O. Thompson and D. E. Chimenti, eds. (Plenum Press, New York, 1987) Vol. 6, p. 1085.Google Scholar
  35. 35.
    D. E. Chimenti and A. H. Nayfeh,Appl. Phys. Lett. 49:492 (1986).Google Scholar
  36. 36.
    D. E. Chimenti and A. H. Nayfeh, inReview of Progress in Quantitative NDE, D. O. Thompson and D. E. Chimenti, eds. (Plenum Press, New York, 1988), Vol. 7, p. 63.Google Scholar
  37. 37.
    A. H. Nayfeh and D. E. Chimenti,J. Appl. Mech. 55:863 (1988).Google Scholar
  38. 38.
    A. H. Nayfeh and D. E. Chimenti, inReview of Progress in Quantitative NDE, D. O. Thompson and D. E. Chimenti, eds. (Plenum Press, New York, 1989), Vol. 8, p. 208.Google Scholar
  39. 39.
    A. H. Nayfeh and D. E. Chimenti,J. Appl. Mech. 56:881 (1989).Google Scholar
  40. 40.
    D. E. Chimenti and A. H. Nayfeh, inReview of Progress in Quantitative NDE, D. O. Thompson and D. E. Chimenti, eds. (Plenum Press, New York, 1989), Vol. 8, p. 221.Google Scholar
  41. 41.
    D. E. Chimenti and A. H. Nayfeh, inWave Propagation in Structural Composites, A. K. Mal and T. C. T. Ting, eds. (ASME, New York, 1988), AMD Vol. 90, p. 29.Google Scholar
  42. 42.
    A. H. Nayfeh, T. W. Taylor, and D. E. Chimenti, inWave Propagation in Structural Composites, A. K. Mal and T. C. T. Ting, eds. (ASME, New York, 1988), AMD Vol. 90, p. 17Google Scholar
  43. 43.
    D. E. Chimenti and A. H. Nayfeh,J. Acoust. Soc. Am. 87:1409 (1990).Google Scholar
  44. 44.
    A. H. Nayfeh and D. D. Chimenti,J. Acoust. Soc. Am. (to be published).Google Scholar
  45. 45.
    S. I. Rokhlin, D. E. Chimenti, and A. H. Nayfeh, inReview of Progress in Quantitàtive NDE, D. O. Thompson and D. E. Chimenti, eds. (Plenum Press, New York, 1989), Vol. 8, p. 205.Google Scholar
  46. 46.
    S. I. Rokhlin, D. E. Chimenti and A. H. Nayfeh,J. Acoust. Soc. Am. 85:1074 (1989).Google Scholar
  47. 47.
    F. H. Chang, G. W. Yee, and J. C. Couchman,J. Nondestr. Testing 7:194 (1974),Google Scholar
  48. 48.
    W. R. Scott and P. F. Gordon,J. Acoust. Soc. Am. 62:108 (1977).Google Scholar
  49. 49.
    P. B. Nagy, W. R. Rose, and L. Adler, inReview of Progress in Quantitative NDE, D. O. Thompson and D. E. Chimenti, eds. (Plenum Press, New York, 1986), Vol. 5, p. 483.Google Scholar
  50. 50.
    L. H. Pearson and W. J. Murri, inReview of Progress in Quantitative NDE, D. O. Thompson and D. E. Chimenti, eds. (Plenum Press, New York, 1986), Vol. 5, p. 1093.Google Scholar
  51. 51.
    E. Drescher-Krasicka, John A. Simmons, and H. N. G. Wadley, inReview of Progress in Quantitative NDE, D. O. Thompson and D. E. Chimenti, eds. (Plenum Press, New York, 1987), Vol. 6, p. 1129.Google Scholar
  52. 52.
    J. L. Rose, A. Pilarski, A. Tverdokhlebov, K. Balasubramaniam, J. Dale, and D. Diprimeo, inReview of Progress in Quantitative NDE, D. O. Thompson and D. E. Chimenti, eds. (Plenum Press, New York, 1988), Vol. 7, p. 85.Google Scholar
  53. 53.
    S. K. Datta, A. H. Shah, and Y. Al-Nassar, inReview of Progress in Quantitative NDE, D. O. Thompson and D. E. Chimenti, eds. (Plenum Press, New York, 1988), Vol. 7, p. 987.Google Scholar
  54. 54.
    Y. Li and R. B. Thompson, inReview of Progress in Quantitative NDE, D. O. Thompson and D. E. Chimenti, eds. (Plenum Press, New York, 1989), Vol. 8, p. 189.Google Scholar
  55. 55.
    R. L. Bratton, S. K. Datta, and A. H. Shah, inReview of Progress in Quantitative NDE, D. O. Thompson and D. E. Chimenti, eds. (Plenum Press, New York, 1989), Vol. 8., p. 197.Google Scholar
  56. 56.
    A. K. Mal and Y. Bar-Cohen, inWave Propagation in Structural Composites, A. K. Mal and T. C. T. Ting, eds. (ASME, New York, 1988), AMD Vol. 90, p. 1.Google Scholar
  57. 57.
    S. K. Datta, A. H. Shah, T. Chakraborty, and R. L. Bratton, inWave Propagation in Structural Composities, A. K. Mal and T. C. T. Ting, eds. (ASME, New York, 1988), AMD Vol. 90, p. 39.Google Scholar
  58. 58.
    W. A. Green and E. R. Baylis, inWave Propagation in Structural Composites, A. K. Mal and T. C. T. Ting, eds. (ASME, New York, 1988), AMD Vol. 90, p. 69.Google Scholar
  59. 59.
    J. D. Achenbach and Y. C. Lu, inWave Propagation in Structural Composites, A. K. Mal and T. C. T. Ting, eds. (ASME, New York, 1988), AMD Vol. 90, p. 99.Google Scholar
  60. 60.
    M. J. P. Musgrave,Geophys. J. 3:406–418 (1960).Google Scholar
  61. 61.
    E. G. Henneke, II,J. Acoust. Soc. Am. 51:210 (1972).Google Scholar
  62. 62.
    S. I. Rokhlin, T. K. Bolland, and Laszlo Adler,J. Acoust. Soc. Am. 79:906 (1986).Google Scholar
  63. 63.
    J. W. Dunkin, Computation of modal solutions in layered elastic media at high frequencies,Bull. Seismol. Soc. Am. 55:335 (1965).Google Scholar
  64. 64.
    W. M. Ewing, W. S. Jardetsky, and F. Press,Elastic Waves in Layered Media (McGraw-Hill, New York, 1957).Google Scholar
  65. 65.
    D. Folds and C. Loggins, Transmission and reflection of ultrasonic waves in layered media,J. Acoust. Soc. Am. 62:1102 (1977).Google Scholar
  66. 66.
    N. A. Haskell, The dispersion of surface waves in mutilayered media,Bull. Seismol. Soc. Am. 43:17 (1953).Google Scholar
  67. 67.
    A. E. H. Love,A Treatise on the Mathematical Theory of Elasticity (Dover, New York, 1927), 4th Ed.Google Scholar
  68. 68.
    D. E. Chimenti and A. Nayfeh,J. Acoust. Soc. Am. 85:555 (1989).Google Scholar
  69. 69.
    A. H. Nayfeh and D. E. Chimenti,J. Acoust. Soc. Am. 83:1736 (1988).Google Scholar
  70. 70.
    A. Schoch,Acustica 2:1 (1952).Google Scholar
  71. 71.
    R. Fiorito, W. Madigosky, and H. Uberall,J. Acoust. Soc. Am. 66:857 (1979).Google Scholar
  72. 72.
    A. H. Nayfeh and T. W. Taylor, inReview of Progress in Quantitative NDE, D. O. Thompson and D. E. Chimenti, eds. (Plenum Press, New York, 1988), Vol. 7, p. 919.Google Scholar
  73. 73.
    A. K. Mal, C. C. Yin, and Y. Bar-Cohen, inReview of Progress in Quantitative NDE, D. O. Thompson and D. E. Chimenti, eds. (Plenum Press, New York, 1988), Vol. 7, p. 927.Google Scholar
  74. 74.
    R. D. Kriz and W. W. Stinchcomb,Exp. Mech. 19:4 (1979).Google Scholar
  75. 75.
    L. Cremer,Akust. Z. 7:81 (1942).Google Scholar
  76. 76.
    W. P. Mason and H. J. McSkimin,J. Appl. Phys. 19:940 (1948).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • D. E. Chimenti
    • 1
  • Adnan H. Nayfeh
    • 2
  1. 1.Center for NDE, Materials Science and Engineering DepartmentThe Johns Hopkins UniversityBaltimore
  2. 2.Department of Aerospace Engineering and Engineering MechanicsUniversity of CincinnatiCincinnati

Personalised recommendations