Journal of Materials Science

, Volume 12, Issue 2, pp 373–383 | Cite as

On the formation of the diamond grain configuration during high temperature creep and fatigue

  • Vakil Singh
  • P. Rama Rao
  • G. J. Cocks
  • D. M. R. Taplin
Papers

Abstract

A study has been made of the influence of test variables on the formation of the diamond grain configuration during high temperature creep and fatigue deformation of a wide variety of metals. The proposed mechanisms for the formation of this interesting grain morphology are reviewed. It is concluded that the diamond grain configuration arises from a balance between grain-boundary sliding, grain-boundary mobility, intragranular deformation and defect imbalance across the grain boundaries and that it tends to be stabilized by intergranular cavitation. While the phenomenon occurs during high temperature fatigue in a variety of metals irrespective of their crystal structure, during creep it has been observed only in to h c p metals. It is surmised that the occurrence of the diamond array of grain boundaries during creep deformation in h c p metals is aided by the limited number of slip systems which leads to high defect imbalances in adjacent grains and consequently high driving forces for grain-boundary migration. On the basis of quantitative metallography involving measurements of the number of edges per grain section, the number of grains meeting at vertices, angular distribution histograms and grain-boundary lengths in different angular orientations with respect to the stress axis in "annealed" and "diamond" microstructures, it is concluded that the shape of the "diamond" grain is essentially the same as that of the "annealed" grain but in a distorted form.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. U. Snowden andJ. N. Greenwood,Trans. Met. Soc. AIME 212 (1958) 91.Google Scholar
  2. 2.
    K. U. Snowden,Phil. Mag. 6 (1961) 321.Google Scholar
  3. 3.
    Idem, ibid 14 (1966) 1019.Google Scholar
  4. 4.
    S. Takeuchi andT. Homma,Trans. Jap. Inst. Metals 7 (1966) 39.Google Scholar
  5. 5.
    H. D. Williams andC. W. Corti,Met. Sci. J. 1 (1967) 140.Google Scholar
  6. 6.
    A. Gittins,ibid 2 (1968) 51.Google Scholar
  7. 7.
    G. Wigmore andG. C. Smith,ibid 5 (1971) 58.Google Scholar
  8. 8.
    G. J. Cocks andD. M. R. Taplin, Proceedings of the 3rd International Conference on Fracture, Munich (1973) p. 332.Google Scholar
  9. 9.
    R. L. Stegman andM. R. Achter,Trans. Met. Soc. AIME 239 (1967) 742.Google Scholar
  10. 10.
    J. T. Blucher andN. J. Grant,ibid 239 (1967) 805.Google Scholar
  11. 11.
    R. P. Skelton,Met. Sci. J. 1 (1967) 140.Google Scholar
  12. 12.
    D. H. Sastry, Y. V. R. K. Prasad, K. I. Vasu andP. Rama Rao,J. Mater. Sci. 8 (1973) 1517.Google Scholar
  13. 13.
    K. U. Snowden andP. A. Stathers,Scripta Met. 7 (1973) 1097.Google Scholar
  14. 14.
    H. J. Westwood andD. M. R. Taplin,Mat. Sci. Eng. 9 (1972) 118.Google Scholar
  15. 15.
    Idem, Met. Trans. 3 (1972) 1959.Google Scholar
  16. 16.
    R. P. Skelton,Met. Sci. J. 8 (1974) 56.Google Scholar
  17. 17.
    Vakil Singh, P. Rama Rao andD. M. R. Taplin,J. Mater. Sci. 8 (1973) 373.Google Scholar
  18. 18.
    M. Itagawa, T. and A. M. Report No. 319 of the Department of Theoretical and Applied Mechanics, University of Illinois, Urbana (1972).Google Scholar
  19. 19.
    H. J. Westwood andD. M. R. Taplin,Met. Trans. 5 (1974) 1701.Google Scholar
  20. 20.
    J. L. Walter andH. E. Cline,Trans. Met. Soc. AIME 242 (1968) 1823.Google Scholar
  21. 21.
    B. A. Wilcox andA. H. Clauer,Acta Met. 20 (1972) 743.Google Scholar
  22. 22.
    H. E. Evans andR. P. Skelton,Met. Sci. J. 3 (1969) 152.Google Scholar
  23. 23.
    G. J. Cocks andD. M. R. Taplin,J. Aust. Inst. Met. 20 (1975) 210.Google Scholar
  24. 24.
    E. Shapiro, J. Crane, G. J. Cocks andD. M. R. Taplin, Conference on Creep and Fatigue in Elevated Temperature Applications, Inst. Mech. Eng.217 (1973) 1.Google Scholar
  25. 25.
    D. L. Ritter andN. J. Grant, in "Thermal and High-Strain Fatigue", Monograph and Report Series No. 32 (Inst. Metals, London, 1967) p. 80.Google Scholar
  26. 26.
    R. C. Gifkins,Trans. Met. Soc. AIME 215 (1959) 1015.Google Scholar
  27. 27.
    K. T. Aust andC. G. Dunn,Trans. Met. Soc. AIME 209 (1957) 472.Google Scholar
  28. 28.
    R. M. Puccini, Univ. Toronto Inst. for Aerospace Studies, TN142 (March 1970).Google Scholar
  29. 29.
    H. J. Westwood, Ph.D. Thesis, University of Waterloo, Waterloo, Canada (1972).Google Scholar
  30. 30.
    D. M. R. Taplin, S. Sagat andV. Singh, INCRA Project Report No. 228, 1974.Google Scholar
  31. 31.
    I. S. Servi andN. J. Grant,J. Metals 3 (1951) 909.Google Scholar
  32. 32.
    H. C. Chang andN. J. Grant,ibid 4 (1952) 619.Google Scholar
  33. 33.
    A. W. Mullendor andN. J. Grant,Trans. Met. Soc. AIME 227 (1963) 319.Google Scholar
  34. 34.
    K. D. Challenger andJ. Moteff,Met. Trans. 3 (1972) 1675.Google Scholar
  35. 35.
    C. E. Feltner,Acta Met. 11 (1963) 817.Google Scholar
  36. 36.
    N. F. Mott, "Dislocations and Mechanical Properties of Crystals", edited by R.M. Fisheret al. (Wiley, New York) p. 458.Google Scholar
  37. 37.
    T. Broom andR. K. Ham,Proc. Roy. Soc 242 (1957) 166.Google Scholar
  38. 38.
    R. P. Skelton,Phil. Mag. 14 (1966) 563.Google Scholar
  39. 39.
    R. C. Gifkins, University of Melbourne Report CSIRO 9 (1971).Google Scholar
  40. 40.
    R. L. Bell andT. G. Langdon, Proceedings of Conference on Interfaces, edited R. C. Gifkins (Butterworths, London, 1969) p. 115.Google Scholar
  41. 41.
    C. S. Smith, "Metal Interfaces", (A.S.M, Cleveland, Ohio, 1961) p. 65.Google Scholar
  42. 42.
    Idem, Met. Rev. 9 (1964) 1.Google Scholar

Copyright information

© Chapman and Hall Ltd 1977

Authors and Affiliations

  • Vakil Singh
    • 1
  • P. Rama Rao
    • 1
  • G. J. Cocks
    • 2
  • D. M. R. Taplin
    • 3
  1. 1.Department of Metallurgical EngineeringBanaras Hindu UniversityVaranasiIndia
  2. 2.Department of Chemical EngineeringUniversity of Adelaide
  3. 3.Department of Mechanical EngineeringUniversity of WaterlooWaterlooCanada

Personalised recommendations