Journal of Nondestructive Evaluation

, Volume 4, Issue 3–4, pp 157–163 | Cite as

Separation and characterization of stress levels and texture in metal sheet and plate: I. Principles and preliminary experiment

  • J. F. Smith
  • G. A. Alers
  • P. E. Armstrong
  • D. T. Eash
Article

Abstract

An approach is proposed for obtaining separate measures of stress anisotropy and texture in metal sheet or plate. The approach is based on the propagation characteristics ofSH n modes of ultrasonic waves. Experimental work has established that differences betweenSH0 modes with orthogonal directions of propagation provide a measure of stress anisotropy that is insensitive to texture, with the restriction that the pseudosymmetry of the polycrystalline matrix of the sheet or plate is orthorhombic or higher. In the present work, it is argued that the differences between elastic constants associated with orthogonal directions of propagation of higher order modes should provide a meaningful measure of texture. The only requirement is that the texture be sufficiently well developed so that the following inequality is obeyed: ∣C44C55∣>0.002\(\bar C\) with\(\bar C\)=1/2 (C44+C55). HereC44 andC55 are the effective shear moduli for planes normal to the sheet or plate surface and at right angles to each other. They are measurable by observing the differences between the phase velocities of theSH0 and theSHn>0 modes in the principal directions. By using Electromagnetic Acoustic Transducers (EMATs), the phase velocities can be deduced from the frequencies at which an SH mode of fixed wavelength is optimally excited. This approach has the advantage of being independent of specimen geometry and dimensions other than thickness.

Key words

Residual Stress ultrasonics metals EMATs NDE 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Borik and G. Alers,Trans. Metall. Soc. AIME 233: 7 (1965).Google Scholar
  2. 2.
    D. S. Hughes and J. L. Kelley,Phys. Rev. 92: 1145 (1953).Google Scholar
  3. 3.
    R. H. Bergman and R. A. Shahbender,J. Appl. Phys. 29: 1736 (1958).Google Scholar
  4. 4.
    R. N. Thurston and K. Brugger,Phys. Rev. 133: A1604 (1964); errata135: AB3 (1964).Google Scholar
  5. 5.
    D. E. McDonald,IEEE Trans. Sonics Ultrason. SU-28: 75 (1981).Google Scholar
  6. 6.
    A. Seeger and O. Buck,Z. Naturforsch. A15: 1056 (1960).Google Scholar
  7. 7.
    R. N. Thurston,J. Acoust. Soc. Am. 37: 348 (1965).Google Scholar
  8. 8.
    O. I. Gushcha and F. G. Makhort,Prikl. Mekh. 12: 32 (1976).Google Scholar
  9. 9.
    J. F. Smith and J. D. Greiner,J. Metals 32: 34 (1980).Google Scholar
  10. 10.
    R. B. Thompson, J. F. Smith, and S. S. Lee, in D. O. Thompson and D. E. Chimenti (eds),Review of Progress in Quantitative NDE Vol. 2B, (Plenum Press, New York, 1983), p. 1339.Google Scholar
  11. 11.
    R. B. Thompson, S. S. Lee, and J. F. Smith,1983 Ultrasonics Symposium Proceedings (IEEE, New York, 1983), p. 988.Google Scholar
  12. 12.
    R. B. Thompson, J. F. Smith, and S. S. Lee,Appl. Phys. Lett. 44: 296 (1984).Google Scholar
  13. 13.
    R. B. Thompson, S. S. Lee, and J. F. Smith, in D. O. Thompson and D. E. Chimenti (eds.),Review of Progress in Quantitative NDE Vol. 3B, (Plenum Press, New York, 1984), p. 1311.Google Scholar
  14. 14.
    R. B. Thompson, J. F. Smith, and S. S. Lee, The effects of microstructure on the acoustoelastic areas of stress, in O. Buck and S. Wolf (eds.),Non-Destruction Evaluation: Application to Materials Processing (ASM, Publishers Choice Book Mfg. Co., Mars, Pennsylvania, 1984), p. 137–145.Google Scholar
  15. 15.
    R. B. King, C. M. Fortunko,1982 IEEE Ultrasonics Symposium Proceedings (IEEE, New York, 1982), p. 885.Google Scholar
  16. 16.
    R. B. King and C. M. Fortunko,J. Appl. Phys. 54: 3027 (1983).Google Scholar
  17. 17.
    R. B. Thompson, J. F. Smith, and S. S. Lee,Inference of Stress and Texture from the Angular Dependence of Ultrasonic Plate Mode Velocities (Presented at ASM Symposium on Non-Destruction Microstructural Characterizations in Process Control, Detroit, October 1984), to be published in proceedings of symposium.Google Scholar
  18. 18.
    C. F. Vasile and R. B. Thompson,Proc. IEEE Ultrasonics Symposium 1977 (IEEE Cat. No. 77, CH1264-ISU), p. 84.Google Scholar
  19. 19.
    B. A. Auld,Acoustic Fields and Waves in Solids Vol. II. (John Wiley & Sons, New York, 1973), pp. 66–83 and 128–130.Google Scholar
  20. 20.
    F. R. Eshelman and J. F. Smith,J. Appl. Phys. 49: 3284 (1978).Google Scholar
  21. 21.
    R. B. King and C. M. Fortunko,J. Appl. Phys. 55: 3978–3983 (1984).Google Scholar
  22. 22.
    J. W. Pugh and W. R. Hibbard, Jr.,Trans. Am. Soc. Met. 48: 526 (1956).Google Scholar
  23. 23.
    G. Simmons,J. Grad. Research Center Southern Methodist Univ. 34: 115 (1965).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • J. F. Smith
    • 1
  • G. A. Alers
    • 2
  • P. E. Armstrong
    • 3
  • D. T. Eash
    • 3
  1. 1.Ames Laboratory and Department of Materials Science and EngineeringIowa State UniversityAmes
  2. 2.Magnasonics, Inc.Albuquerque
  3. 3.Los Alamos National LaboratoryLos Alamos

Personalised recommendations