Advertisement

Plasma Chemistry and Plasma Processing

, Volume 5, Issue 2, pp 163–173 | Cite as

Decomposition of methane in an AC discharge

  • Mark E. Fraser
  • Daniel A. Fee
  • Ronald S. Sheinson
Article

Abstract

This paper presents qualitative and quantitative product analysis results from an atmospheric-pressure AC discharge of nitrogen containing trace levels of methane and oxygen. In the absence of oxygen the primary products were unreacted methane, hydrogen, and hydrogen cyanide. Methane destruction efficiency was unaffected by trace oxygen addition; however, hydrogen and hydrogen cyanide levels decreased and the concentrations of carbon monoxide, carbon dioxide, and water increased as the level of added oxygen increased. The only cyanide compound that persisted with air as the bulk gas was cyanogen. A chemical mechanism is presented which qualitatively explains the observed product distributions.

Key words

Air purification AC discharge discharge chemistry methane reactions active nitrogen hydrogen cyanide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. E. Fraser, H. G. Eaton, and R. S. Sheinson, Initial Decomposition Mechanisms and Products of DMMP in an AC Discharge,Environ. Sci. Technol. in press (1985).Google Scholar
  2. 2.
    E. J. Clothiaux, J. A. Koropchak, and R. R. Moore,Plasma Chem. Plasma Process. 4, 15 (1984).Google Scholar
  3. 3.
    J. Amouroux and D. Rapakoulias,Rev. Phys. Appl. 12, 1013 (1977).Google Scholar
  4. 4.
    D. Rapakoulias and J. Amouroux,Rev. Phys. Appl. 15, 1251 (1980).Google Scholar
  5. 5.
    A. N. Wright and C. A. Winkler, eds.,Active Nitrogen, Academic Press, New York (1968).Google Scholar
  6. 6.
    S. Miyazaki and S. Takahashi,Mem. Def. Acad. Jpn. 8, 791 (1968).Google Scholar
  7. 7.
    P. A. Gartaganis and C. A. Winkler,Can. J. Chem. 34, 1457 (1956).Google Scholar
  8. 8.
    D. A. Armstrong and C. A. Winkler,Can. J. Chem. 33, 1649 (1955).Google Scholar
  9. 9.
    E. R. Zabolotny, H. Gesser, and M. Bancroft,J. Am. Chem. Soc. 84, 4076 (1962).Google Scholar
  10. 10.
    M. Berger and G. B. Kistiakowsky,J. Phys. Chem. 77, 1725 (1973).Google Scholar
  11. 11.
    C. Haggart and C. A. Winkler,Can. J. Chem. 38, 329 (1960).Google Scholar
  12. 12.
    D.E. Tevault, Plasma Reaction Diagnostics Using Matrix Isolation Infrared Spectroscopy,Proceedings of the 1984 Scientific Conference on Chemical Defense Research, Chemical Research and Development Center, Aberdeen, Maryland (1985).Google Scholar
  13. 13.
    J. Warnatz,Eighteenth Symposium (International) on Combustion pp. 369–381, The Combustion Institute (1981), pp. 369–381.Google Scholar
  14. 14.
    A. B. Callear and M. P. Metcalfe,Chem. Phys. 14, 275 (1976).Google Scholar
  15. 15.
    D. L. Baulch, J. Duxbury, S. J. Grant, and D. C. Montague,J. Phys. Chem. Ref. Data 10, 576–648 (1981).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • Mark E. Fraser
    • 1
  • Daniel A. Fee
    • 1
  • Ronald S. Sheinson
    • 1
  1. 1.Chemistry Division, Code 6180Naval Research LaboratoryWashington, D.C.

Personalised recommendations