Advertisement

Chemistry of Natural Compounds

, Volume 9, Issue 3, pp 308–319 | Cite as

Conformational states of methylamides of N-acetyl α-amino acids and their N-methyl derivatives I. Infrared spectra

  • E. S. Efremov
  • L. B. Senyavina
  • V. N. Zheltova
  • A. G. Ivanova
  • P. V. Kostetskii
  • V. T. Ivanov
  • E. M. Popov
  • Yu. A. Ovchinnikov
Article

Summary

1. The IR spectra of methylamides of N-acetyl α-amino acids and their N-methyl derivatives in CCl4 and CHCl3 solutions have been investigated. An assignment of the bands of the NH and CO stretching vibrations in the folded (with an intramolecular H bond) and the extended conformations has been made.

2. It has been shown that the relative amounts of the folded forms depend on the nature of the amino acid residue and the conditions of the medium. With an increase in the polarity of the solvent, the proportion of folded conformations decreases.

Keywords

Amide Group Extended Form Diamide Conformational Equilibrium Secondary Amide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    E. M. Popov and G. M. Lipkind, Molekul. Biol.,5, 624 (1971).Google Scholar
  2. 2.
    G. M. Lipkind and E. M. Popov, Molekul. Biol.,5, 667 (1971).Google Scholar
  3. 3.
    H. A. Scheraga, Advan. Phys. Org. Chem.,6, 103 (1968).Google Scholar
  4. 4.
    G. N. Ramachandran and V. Sasisekharan, Advan. Protein Chem.,23, 283 (1968).CrossRefGoogle Scholar
  5. 5.
    H. A. Scheraga, Chem. Rev.,71, 195 (1971).CrossRefGoogle Scholar
  6. 6.
    E. M. Popov, G. M. Lipkind, S. F. Arkhipova, and V. G. Dashevskii, Molekul. Biol.,2, 622 (1968).Google Scholar
  7. 7.
    G. M. Lipkind, S. F. Arkhipova, and E. M. Popov, Molekul. Biol.,4, 331 (1970).Google Scholar
  8. 8.
    G. M. Lipkind, S. F. Arkhipova, and E. M. Popov, Molekul. Biol.,4, 509 (1970).Google Scholar
  9. 9.
    E. M. Popov, G. M. Lipkind, and S. F. Arkhipova, Izv. Akad. Nauk SSSR, Ser. Khim., 312 (1971).Google Scholar
  10. 10.
    B. Pullman, Int. J. Quant. Chem.,4, 319 (1970).Google Scholar
  11. 11.
    M. M. Shemyakin, Yu. A. Ovchinnikov, and V. T. Ivanov, Angew. Chem.,81, 523 (1969).CrossRefGoogle Scholar
  12. 12.
    N. F. Kazanskaya, E. N. Slobodyanskaya, V. I. Tsetlin, E. N. Shepel', V. T. Ivanov, and Yu. A. Ovchinnikov, Biokhimiya,35, 1147 (1970).Google Scholar
  13. 13.
    V. T. Ivanov, P. V. Kostetskii, T. A. Balashova, S. L. Portnova, E. S. Efremov, and Yu. A. Ovchinnikov, Khim. Prirodn. Soedin.,9, 339 (1973).Google Scholar
  14. 14.
    E. S. Efremov, P. V. Kostetskii, V. T. Ivanov, E. M. Popov, and Yu. A. Ovchinnikov, Khim. Prirodn. Soedin.,9, 348 (1973).Google Scholar
  15. 15.
    E. S. Efremov, P. V. Kostetskii, V. T. Ivanov, E. M. Popov, and Yu. A. Ovchinnikov, Khim. Prirodn. Soedin.,9, 354 (1973).Google Scholar
  16. 16.
    V. T. Ivanov, P. V. Kostetskii, E. A. Meshcheryakova, E. F. Efremov, E. M. Popov, and Yu. A. Ovchinnikov, Khim. Prirodn. Soedin.,9, 363 (1973).Google Scholar
  17. 17.
    S. Mizushima, T. Shimanouchi, and M. Tsuboi, Nature,166, 406 (1950).CrossRefGoogle Scholar
  18. 18.
    S. Mizushima, T. Shimanouchi, M. Tsuboi, T. Sugita, E. Kato, and E. Kondo, J. Amer. Chem. Soc.,73, 1330 (1951).CrossRefGoogle Scholar
  19. 19.
    S. Mizushima, T. Shimanouchi, M. Tsuboi, and R. Sonda, J. Amer. Chem. Soc.,74, 270 (1952).CrossRefGoogle Scholar
  20. 20.
    S. Mizushima, T. Shimanouchi, M. Tsuboi, T. Sugita, K. Kurosaki, N. Mataga, and R. Sonda, J. Amer. Chem. Soc.,74, 4639 (1952).CrossRefGoogle Scholar
  21. 21.
    S. Mizushima, T. Shimanouchi, M. Tsuboi, T. Sugita, K. Kurosaki, N. Mataga, and R. Sonda, Nature,169, 1058 (1952).CrossRefGoogle Scholar
  22. 22.
    S. Mizushima, T. Shimanouchi, M. Tsuboi, T. Sugita, K. Kurosaki, N. Mataga, and R. Sonda, J. Amer. Chem. Soc.,75, 1863 (1953).CrossRefGoogle Scholar
  23. 23.
    S. Mizushima, M. Tsuboi, T. Shimanouchi, T. Sugita, and T. Yoshimoto, J. Amer. Chem. Soc.,76, 2479 (1954).CrossRefGoogle Scholar
  24. 24.
    S. Mizushima, M. Tsuboi, T. Shimanouchi, and M. Asai, J. Amer. Chem. Soc.,76, 6003 (1954).CrossRefGoogle Scholar
  25. 25.
    S. Mizushima, T. Shimanouchi, M. Tsuboi, and T. Arakawa, J. Amer. Chem. Soc.,79, 5357 (1957).CrossRefGoogle Scholar
  26. 26.
    M. Tsuboi, T. Shimanouchi, and S. Mizushima, J. Amer. Chem. Soc.,81, 1406 (1959).CrossRefGoogle Scholar
  27. 27.
    I. T. Edsall, P. J. Flory, J. C. Kendrew, A. M. Liquori, G. Nemethy, G. N. Ramachandran, and H. A. Scheraga, Biopolymers,4, 121 (1966).CrossRefGoogle Scholar
  28. 28.
    S. L. Portnova, V. F. Bystrov, V. I. Tsetlin, V. T. Ivanov, and Yu. A. Ovchinnikov, Zh. Obshch. Khim.,38, 428 (1968).Google Scholar
  29. 29.
    V. F. Bystrov, S. L. Portnova, V. T. Tsetlin, V. T. Ivanov, and Yu. A. Ovchinnikov, Tetrahedron,25, 493 (1969).CrossRefGoogle Scholar
  30. 30.
    M. Avignon, J. Laskombe, and M. Josien, Biopolymers,7, 13 (1968).Google Scholar
  31. 31.
    M. Avignon, P. V. Huong, J. Laskombe, M. Marraud, and J. Neel, Biopolymers,8, 69 (1969).CrossRefGoogle Scholar
  32. 32.
    M. Avignon and P. V. Huong, Biopolymers,9, 427 (1970).CrossRefGoogle Scholar
  33. 33.
    M. Marraud, J. Neel, M. Avignon, and P. V. Huong, J. Chim. Physicochim. Biolog.,67, 959 (1970).CrossRefGoogle Scholar
  34. 34.
    Y. Koyama and T. Shimanouchi, Biopolymers,6, 1037 (1968).CrossRefGoogle Scholar
  35. 35.
    Y. Koyama, T. Shimanouchi, M. Sato, and T. Tatsuno, Biopolymers,10, 1059 (1971).CrossRefGoogle Scholar
  36. 36.
    G. M. Lipkind, S. F. Arkhipova, and E. M. Popov, Zh. Strukt. Khim.,11, 121 (1970).Google Scholar
  37. 37.
    G. M. Lipkind, S. F. Arkhipova, and E. M. Popov, Izv. Akad. Nauk SSSR, Ser. Khim., 315 (1970).Google Scholar
  38. 38.
    J. Smolikova, A. Vitek, and K. Blaha, Collection Czech. Chem. Commun.,36, 2474 (1971).CrossRefGoogle Scholar
  39. 39.
    E. M. Popov and V. N. Zheltova, J. Mol. Struct.,10, 221 (1971).CrossRefGoogle Scholar
  40. 40.
    R. D. McLachlan and R. A. Nyquist, Spektrochim. Acta,20, 1397 (1964).CrossRefGoogle Scholar
  41. 41.
    F. A. Momany, R. F. McGuire, J. F. Yan, and H. A. Scheraga, J. Phys. Chem.,74, 2424 (1970).CrossRefGoogle Scholar
  42. 42.
    Yu. A. Ovchinnikov, V. T. Ivanov, V. F. Bystrov, A. I. Miroshnikov, E. N. Shepel, N. D. Abdullaev, E. S. Efremov, and L. B. Senyavina, Biochem. Biophys. Res. Commun.,39, 217 (1970).CrossRefGoogle Scholar
  43. 43.
    J. L. Katz and L. Post, Acta Cryst.,13, 624 (1960).CrossRefGoogle Scholar
  44. 44.
    B. Pullman, in: Aspects de la Chimie Quantique Contemporaire, R. Daudel and A. Pullman (editors), Paris (1971), p. 261.Google Scholar
  45. 45.
    E. M. Popov, V. G. Dashevskii, G. M. Lipkind, and S. F. Arkhipova, Molekul. Biol.,2, 612 (1968).Google Scholar
  46. 46.
    T. M. Klotz and J. S. Fransen, J. Amer. Chem. Soc.,84, 3461 (1962).CrossRefGoogle Scholar
  47. 47.
    J. A. Schellman, Compt. Rend. Trav. Lab. Carlsberg, Ser. Chim.,29, 223 (1955).Google Scholar
  48. 48.
    D. A. Ramsay, J. Amer. Chem. Soc.,74, 72 (1952).CrossRefGoogle Scholar
  49. 49.
    N. Jones and K. Sandorfy, in: Chemical Applications of Spectroscopy, W. West (editor), Interscience (1956).Google Scholar
  50. 50.
    A. A. Babushkin, P. A. Bazhulin, F. A. Korolev, L. B. Levshin, V. K. Prokof'ev, and A. R. Striganov, Methods of Spectral Analysis [in Russian], Moscow (1962), p. 273.Google Scholar
  51. 51.
    V. T. Ivanov, L. B. Senyavina, E. S. Efremov, V. V. Shilin, and Yu. A. Ovchinnikov, Khim. Prirodn. Soedin.,7, 347 (1971).Google Scholar

Copyright information

© Plenum Publishing Corporation 1975

Authors and Affiliations

  • E. S. Efremov
  • L. B. Senyavina
  • V. N. Zheltova
  • A. G. Ivanova
  • P. V. Kostetskii
  • V. T. Ivanov
  • E. M. Popov
  • Yu. A. Ovchinnikov

There are no affiliations available

Personalised recommendations