Journal of Nondestructive Evaluation

, Volume 8, Issue 2, pp 135–145 | Cite as

Embedded optical fiber sensors for materials evaluation

  • R. O. Claus
  • K. D. Bennett
  • A. M. Vengsarkar
  • K. A. Murphy
Article

Abstract

Optical fiber waveguides embedded within materials have been applied to the measurement of chemical changes, strain, and temperature inside materials. This paper reviews some of the research that has been performed in this area over the past 10 years and cites the theoretical and demonstrated performance of such sensors for material evaluation during its manufacturing, in service lifetime and degradation periods.

Key words

Optical fibers fiber optic sensors embedded sensors composite materials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Culshaw,Optical Fiber Sensing and Signal Processing (Peter Peregrinus, London, 1984).Google Scholar
  2. 2.
    R. O. Claus and J. H. Cantrell, Detection of Ultrasonic Waves in Solids by an Optical Fiber Interferometer, Proceedings of the IEEE Ultrasonics Symposium, Boston, Massachusetts, October 1980.Google Scholar
  3. 3.
    B. S. Jackson, Optical Time Domain Reflectometry as a Nondestructive Evaluation Technique for Composite Materials, MSEE thesis, Virginia Polytechnic Institute and State University, May 1984.Google Scholar
  4. 4.
    W. B. Jones,Introduction to Optical Fiber Communication Systems (Holt, Rinehart and Winston, New York, 1988).Google Scholar
  5. 5.
    W. B. Spillman, Fiber Optic Sensors for Composite Monitoring, Proceedings of the SPIE O/E Fiber Lase, Boston, Massachusetts, September 1988.Google Scholar
  6. 6.
    S. Jeglinski and T. Rytting, NASA Workshop on Intelligent Structures, Hampton, Virginia, February 1987.Google Scholar
  7. 7.
    E. Udd, Overview of Fiber Optic Smart Structures for Aerospace Applications, Proceedings of the SPIE O/E Fiber Lase, Boston, Massachusetts, September 1988.Google Scholar
  8. 8.
    R. Czarnek, Y. Guo, K. D. Bennett, and R. O. Claus, Interferometric Measurements of Strain Concentrations Induced by an Optical Fiber Embedded in Fiber Reinforced Composites,” Proceedings of the SPIE O/E Fiber Lase, Boston, Massachusetts, September 1988.Google Scholar
  9. 9.
    R. L. Levy and D. P. Ames,Polymer Science Technology (Vol. 29), (Adhesion Chemistry, Plenum, 1984), pp. 245–256.Google Scholar
  10. 10.
    B. Franconi, F. Wang, D. Hunston, and F. Mopsik, inMaterials Characterization for Systems Performance and Reliability, J. W. McCauly and V. Weiss, eds., (Plenum).Google Scholar
  11. 11.
    C. DiFrancia, Development of Fiber Optic Sensors Using an Active Polymer Cladding, MS thesis in Chemistry, Virginia Polytechnic Institute and State University, February 1988.Google Scholar
  12. 12.
    M. Reddy, Embedded Optical Fiber Sensor of Differential Strain and Temperature in Graphite/Epoxy Composites, MSEE thesis, Virginia Polytechnic and State University, August 1987.Google Scholar
  13. 13.
    K. A. Murphy, A. Vengsarkar, and R. O. Claus, Temperature Insensitive Fiber Optic Interferometric Sensor,” Proceedings of the SPIE O/E Fiber Lase, Boston, Massachusetts, September 1988.Google Scholar
  14. 14.
    M. A. Aframowitz, Fiber optic polymer cure sensor,J. Lightwave Tech.,6(10):1591 (1988).Google Scholar
  15. 15.
    G. Meltz, J. R. Dunphy, W. W. Morey, and E. Snitzer, Cross-talk fiber-optic temperature sensor,Appl. Opt.,22(3):464, 1983.Google Scholar
  16. 16.
    B. D. Duncan, B. W. Brennan, and R. O. Claus, Intensity Pattern Modulation in Optical Fiber Modal Domain Sensor Systems Experimental Results, Proceedings of the SPIE O/E Fiber Lase, Boston, Massachusetts, September 1988.Google Scholar
  17. 17.
    R. Kriz, Optical Fiber Sensors at NBS, Proceedings of the NASA Workshop on Intelligent Structures, Hampton, Virginia, February 1987.Google Scholar
  18. 18.
    R. S. Rogowski, Smart Structures for NASA Missions, Proceedings of the SPIE O/E Fiber Lase, Boston, Massachusetts, September 1988.Google Scholar
  19. 19.
    K. D. Bennett and R. O. Claus, Analysis of Composite Structures Using Fiber Optic Modal Sensing, Proceedings of the IEEE Region 3 Conference, Richmond, Virginia, April 1986.Google Scholar
  20. 20.
    P. A. Ehrenfeuchter and R. O. Claus, Optical Fiber Waveguide Methods for Advanced Materials, Proceedings of the International Metallagraphic Society Conference, Monterey, California, July 1987.Google Scholar
  21. 21.
    K. D. Bennett, J. C. McKeeman, and R. G. May, Full Field Analysis of Modal Domain Sensor Signals for Structural Control, Proceedings of the SPIE O/E Fiber Lase, Boston, Massachusetts, September 1988.Google Scholar
  22. 22.
    C. A. Rogers, D. K. Barker, K. D. Bennett, and R. H. Wynn, Jr., Demonstration of a Smart Material with Embedded Actuators and Sensors for Active Control, Proceedings of the SPIE O/E Fiber Lase, Boston, Massachusetts, September 1988.Google Scholar
  23. 23.
    C. Lamb et al., “Recent developments in optical fiber hydrophone technology,”New Materials for Sonar Transducers, IEE (London), April 1986.Google Scholar
  24. 24.
    M. L. Henning, and C. Lamb, “At-sea deployment of a multiplexed fiber optic hydrophone array,” Proc. Optical Fiber Sensors (New Orleans, LA), January 1988.Google Scholar
  25. 25.
    Fieldset al., Fiber optic hydrophone, inPhysics of Fibers (Vol. 2),Advances in Ceramics, Bendow and Mitra, eds. (American Ceramic Society), pp. 529–538.Google Scholar
  26. 26.
    A. M. Vengsarkar, K. A. Murphy, T. A. Tran, and R. O. Claus, Microbend Loss Fiber Optic Amplitude and Direction Sensor for Underwater Applications, Proceedings of the SPIE O/E Fiber Lase, Boston, Massachusetts, September 1988.Google Scholar
  27. 27.
    H. L. W. Chan, K. S. Chiang, and J. L. Gardner, Polarimetric Optical Fiber Sensor for Ultrasonic Power Measurement, IEEE Ultrasonics Symposium, Chicago, Illinois, October 1988.Google Scholar
  28. 28.
    C. H. Palmer and R. E. Green, Jr., A comparison of optically and piezoelectrically sensed acoustic emission signals,Appl. Opt.,16:2333 (1977).Google Scholar
  29. 29.
    R. A. Kline and R. E. Green, Jr., Optical detection of acoustic emission waves,J. Acoust. Soc. Am.,64:1633 (1978).Google Scholar
  30. 30.
    A. M. Vengsarkar, K. A. Murphy, C. J. Chung, and R. O. Claus, Fiber Optic Interferometric Sensor for Surface Acoustic Wave Measurement, Review of Progress in QNDE, San Diego, California, August 1988.Google Scholar
  31. 31.
    K. D. Bennett, R. O. Claus, and M. J. Pindera, Internal monitoring of acoustic emission in graphite epoxy composites using imbedded optical fiber, Proceedings of the Review of Progress in QNDE, San Diego, California, August 1986.Google Scholar
  32. 32.
    K. D. Bennett and K. D. Zehner, Acoustic Emission Detection in Smart Materials, Fiber and Electro-Optics Research Center Second Annual Review, Blacksburg, Virginia, April 1988.Google Scholar
  33. 33.
    W. W. Miller, K. A. Murphy, M. Gunther, A. M. Vengsarkar, and R. O. Claus, Acoustic Emission Detection in Metals with Embedded Optical Fibers,” Internal Research and Development Report, Fiber and Electro-Optics Research Center, Virginia Tech, Blacksburg, Virginia, September 1988.Google Scholar
  34. 34.
    R. M. Crane, A. B. Macander, and J. Gagorik, Fiber Optics for a Damage Assessment System for Fiber Reinforced Plastic Composite Structures, AF/DARPA-NAVY/DARPA Review of Progress in QNDE, San Diego, California, August 1982.Google Scholar
  35. 35.
    R. M. Measures, N. D. W. Glossop, J. Lymer, and R. C. Tennyson, Structurally Integrated Fiber Optic Damage Assessment System for Composite Materials, Proceedings of the SPIE E/O Fiber Lase (Boston, MA), September 1988.Google Scholar
  36. 36.
    M. S. Miller and S. Feth, DUCKMAT, Fiber and Electro-Optics Research Center Second Annual Review, Blacksburg, Virginia, April 1988.Google Scholar
  37. 37.
    R. Kuhlman, B. D. Duncan, and R. O. Claus, Fiber Optic Composite Impact Monitor, Proceedings of the IEEE Region 3 Conference, Tampa, Florida, April 1987.Google Scholar
  38. 38.
    K. D. Bennett and R. O. Claus, Optical Signal Processor/Computer, Fiber and Electro-Optics Research Center, Patent disclosure, April 1988.Google Scholar
  39. 39.
    R. O. Claus and J. C. Wade, Distributed strain measurement in a rectangular plate using an array of optical fiber sensors.J. Nondestr. Eval.,41:106, 1983.Google Scholar
  40. 40.
    K. D. Bennett, R. O. Claus, and M. D. Dumais, Impact Characterization by Optical Fiber Ultrasonic Sensors, IEEE Ultrasonics Symposium, Chicago, Illinois, October 1988.Google Scholar
  41. 41.
    J. R. Dunphy and G. Meltz, Fiber Optic Sensor for High Speed Material Diagnostics, Proceedings of the Conference of SEM, Optical methods in composites, November 1986.Google Scholar
  42. 42.
    J. R. Dunphy and G. Meltz, Optical fiber shock wave sensor for composites, Proceedings of the SPIE O/E Fiber Lase, Boston, Massachusetts, September 1988.Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • R. O. Claus
    • 1
  • K. D. Bennett
    • 1
  • A. M. Vengsarkar
    • 1
  • K. A. Murphy
    • 1
  1. 1.Fiber and Electro-Optics Research Center, Virginia TechBlacksburg

Personalised recommendations