Advertisement

Molecular Breeding

, Volume 2, Issue 3, pp 185–210 | Cite as

Transformation ofBrassica oleracea L.: a critical review

  • I. J. Puddephat
  • T. J. Riggs
  • T. M. Fenning
Review Article

Abstract

Brassica oleracea is a highly polymorphic species encompassing a wide range of important vegetable and fodder crops. Gene transfer into cultivated forms of this species requires reproducible and efficient methods for genetic transformation and plant regeneration. In this review, we have collated the research experience on transformation ofB. oleracea to highlight the problems encountered. Most research effort has been directed at developingAgrobacterium-mediated transformation methods with relatively little emphasis to date on direct gene transfer techniques. Common procedures for the transformation ofB. oleracea have not emerged, due to the inherent variability between and amongst genotypes. Future progress would be facilitated by the use of genetically fixed material, such as double-haploid or inbred lines, to reduce variation of response within genotypes and would avoid the need for cultivar-specific transformation protocols if responsive lines amenable to crossing with cultivated forms could be identified. The principal difficulties relate to combining efficient plant regeneration with gene transfer. Methods that enhance bacterial virulence and increase the proportion of cells susceptible to transformation and competent for regeneration are discussed. Inefficient selection is a major cause of poor transformation frequencies inB. oleracea and has resulted in the regeneration of chimeric plants uponAgrobacterium tumefaciens-mediated transformation. Promising results have been obtained withAgrobacterium rhizogenes-mediated transformation but the impact of therol genes on flowering of primary transformants has not yet been fully assessed. Strategies to reduce the deleterious effects of therol genes on flowering are discussed. Few agronomically useful characters have been introduced, the majority of research having been confined to the introduction of marker and reporter genes; possible candidate genes are discussed.

Key words

Brassica oleracea Agrobacterium transformation direct gene transfer regeneration virulence flowering rol genes transgene expression transgene inactivation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alstad DN, Andow DA: Managing the evolution of insect resistance to transgenic plants. Science 268: 1894–1896 (1995).Google Scholar
  2. 2.
    Alt-Mörbe J, Nedderman P, VonLintig J, Weiler EW, Schroder J: Temperature-sensitive step in Ti-plasmid vir-region induction and correlation with cytokinin secretion byAgrobacteria. Mol Gen Genet 213: 1–8 (1989).Google Scholar
  3. 3.
    Assaad FF, Tucker KL, Singer ER: Epigenetic repeat-induced gene silencing (RIGS) inArabidopsis. Plant Mol Biol 22: 1067–1085 (1993).Google Scholar
  4. 4.
    Baulcombe D: Novel strategies for engineering virus resistance in plants. Curr Opin Biotechnol 5: 117–124 (1994).Google Scholar
  5. 5.
    Béclin C, Chalot F, Botton E, Jouanin L, Dore C: Potential use of theaux2 gene fromAgrobacterium rhizogenes as a conditional negative marker in transgenic cabbage. Transgen Res 2: 48–55 (1993).Google Scholar
  6. 6.
    Berthomieu P, Jouanin L: Transformation of rapid cycling cabbage (Brassica oleracea var.capitata) withAgrobacterium rhizogenes. Plant Cell Rep 11: 334–338 (1992).Google Scholar
  7. 7.
    Berthomieu P, Béclin C, Charlot F, Doré C, Jouanin L: Routine transformation of rapid cycling cabbage (Brassica oleracea)-molecular evidence for regeneration of chimeras. Plant Sci 96: 223–235 (1994).Google Scholar
  8. 8.
    Brasileiro AMC, Leplé J-C, Muzzin J, Ounnoughi D, Michel M-F, Jouanin L; An alternative approach for gene transfer in trees using wild-typeAgrobacterium strains. Plant Mol Biol 17: 441–452 (1991).Google Scholar
  9. 9.
    Cardarelli M, Mariotti D, Pomponi M, Span〈ograve〉 L, Capone I, Costantino P:Agrobacterium rhizogenes T-DNA genes capable of inducing hairy root phenotype. Mol Gen Genet 209: 475–480 (1987).Google Scholar
  10. 10.
    Capone I, Span〈ograve〉 L, Cardarelli M, Bellincampi D, Petit A, Costantino P: Induction and growth properties of carrot roots with different complements ofAgrobacterium rhizogenes T-DNA. Plant Mol Biol 13: 43–52 (1989).Google Scholar
  11. 11.
    Christey MC, Sinclair BK: Regeneration of transgenic kale (Brassica oleracea var.acephala) rape (B. napus) and turnip (B. campestris var.rapifera) plants viaAgrobacterium rhizogenes mediated transformation. Plant Sci 87: 161–169 (1992).Google Scholar
  12. 12.
    Christey MC, Sinclair BK: Field-testing of Kapeti kale regenerated fromAgrobacterium-induced hairy roots. NZ J Agric Res 36: 389–392 (1993).Google Scholar
  13. 13.
    Chyi YS, Jorgenson RA, Goldstein D, Tanksley SD, Loaiza-Figueroa F. Locations and stability ofAgrobacterium-mediated T-DNA insertions in theLycopersicon genome. Mol Gen Genet 204: 64–69 (1986).Google Scholar
  14. 14.
    Colby SM, Juncosa AM, Meredith CP: Cellular Differences inAgrobacterium susceptibility and regenerative capacity restrict the development of transgenic grapevines. J Am Soc Hort Sci 116: 356–361 (1991).Google Scholar
  15. 15.
    David C, Tempé J: Genetic transformation of cauliflower (Brassica oleracea L. var.botrytis) byAgrobacterium rhizogenes. Plant Cell Rep 7: 88–91 (1988).Google Scholar
  16. 16.
    DeBlock M, DeBrouwer D, Tenning P: Transformation ofBrassica napus andBrassica oleracea usingAgrobacterium tumefaciens and the expression ofbar andneo genes in transgenic plants. Plant Physiol 91: 694–701 (1989).Google Scholar
  17. 17.
    DeLuca M, McElroy WD: Purification and properties of firefly luciferase. Meth Enzymol 57: 3–15 (1978).Google Scholar
  18. 18.
    Delzer BW, Somers DA, Orf JH:Agrobacterium tumefaciens susceptibility and plant regeneration of 10 soybean genotypes in maturity groups 00 to II. Crop Sci 30: 320–322 (1990).Google Scholar
  19. 19.
    Delores SC, Gardner RC: Analysis of T-DNA structure in a large number of transgenic petunias generated byAgrobacterium-mediated transformation. Plant Mol Biol 11: 365–377 (1988).Google Scholar
  20. 20.
    Dietert MF, Barron SA, Toder OC: Effects of genotypes onin vitro culture in the genusBrassica. Plant Sci Lett 26: 233–240 (1982).Google Scholar
  21. 21.
    Ellis PR, Cole R: Sources of resistance to cabbage aphid in brassicas. Annual Report for Horticulture Research International 1993–94, pp. 29–30 (1994).Google Scholar
  22. 22.
    Eimert K, Schröder C, Siegemund F: Expression of the NPTII-sequence in cauliflower after injection ofAgrobacterium into seeds. J Plant Physiol 140: 37–40 (1992).Google Scholar
  23. 23.
    Eimert K, Siegemund F: Transformation of cauliflower (Brassica oleracea L. var.botrytis) — an experimental survey. Plant Mol Biol 19: 485–490 (1992).Google Scholar
  24. 24.
    Feldmann KA, Marks MD, Christianson ML, Quatrano RS: A dwarf mutant ofArabidopsis generated by T-DNA insertion mutagenesis. Science 243: 1351–1354 (1989).Google Scholar
  25. 25.
    Finnegan J, McElroy D: Transgene inactivation: plants fight back! Bio/technology 12: 883–888 (1994)Google Scholar
  26. 26.
    Flavell RB: Inactivation of gene expression in plants as a consequence of specific sequence duplication. Proc Natl Acad Sci USA 91: 3490–3496 (1994).Google Scholar
  27. 27.
    Fry J, Barnason A, Horsch RB: Transformation ofBrassica napus withAgrobacterium tumefaciens based vectors. Plant Cell Rep 6: 321–325 (1987).Google Scholar
  28. 28.
    Goodwin I, Todd G, Ford-Lloyd B, Newbury HJ: The effects of acetosyringone and pH onAgrobacterium-mediated transformation vary according to plant species. Plant Cell Rep 9: 671–675 (1991).Google Scholar
  29. 29.
    Grevelding C, Fanates V, Kemper E, Schell J, Masterson R: Single-copy T-DNA insertions inArabidopsis are the predominant form of integration in root-derived transgenics, whereas multiple insertions are found in leaf discs. Plant Mol Biol 23: 847–860 (1993).Google Scholar
  30. 30.
    Hamada M, Hosoki T, Kusabiraki Y, Kigo T: Hairy root formation and plantlet regeneration from Brussels sprouts (Brassica oleracea var.gemmifera Zenk.) mediated byAgrobacterium rhizogenes. Plant Tissue Culture Lett 6: 130–133 (1989).Google Scholar
  31. 31.
    Hamilton AJ, Lycett GW, Grierson D: Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants. Nature 346: 437–439 (1990).Google Scholar
  32. 32.
    Hamill JD, Rounsley S, Spencer A, Todd G, Rhodes MJC: The use of the polymerase chain reaction in plant transformation studies. Plant Cell Rep 10: 221–224 (1991).Google Scholar
  33. 33.
    Heiser W: Optimization of Biolistic® transformation using the helium-driven PDS-1000/He system. BioRad US/EG Bulletin 1688 (1995).Google Scholar
  34. 34.
    Hobbs SLA, Kpodar P DeLong CMO: The effect of T-DNA copy number, position and methylation on reporter gene expression in tobacco transformants. Plant Mol Biol 15: 851–864 (1990).Google Scholar
  35. 35.
    Hobbs SLA, Warkentin TD, DeLong CMO: Transgene copy number can be positively or negatively associated with transgene expression. Plant Mol Biol 21: 17–26 (1993).Google Scholar
  36. 36.
    Hodgkin T: Cabbages, kales etc.Brassica oleracea (Cruciferae). In: Smartt J, Simmonds NW (eds) Evolution of Crop Plants, pp. 76–82. Longman (1995).Google Scholar
  37. 37.
    Hoekema A, Hirsch PR, Hooykaass PJJ, Schilperoort RA: A binary vector strategy based on separation ofvir- and T-region ofAgrobacterium tumefaciens Ti-plasmid. Nature 303: 179–180 (1983).Google Scholar
  38. 38.
    Holford P, Hernandez N, Newbury HJ: Factors influencing the efficiency of T-DNA transfer during co-cultivation ofAntirrhinum majus withAgrobacterium tumefaciens. Plant Cell Rep 11: 196–199 (1992).Google Scholar
  39. 39.
    Holbrook LA, Miki BL:Brassica grown gall tumorigenesis and in vitro of transformed tissue. Plant Cell Rep 4: 329–332 (1985).Google Scholar
  40. 40.
    Horsch RB, Fry JE, Hoffmann NL, Eichholz D, Rogers SG, Fraley RT: A simple and general method for transferring genes into plants. Science 227: 1229–1231 (1984).Google Scholar
  41. 41.
    Hosoki T, Shiraishi K, Kigo T, Ando M: Transformation and regeneration of ornamental kale (Brassica oleracea var.acephala DC) mediated byAgrobacterium rhizogenes. Scient Hort 40: 259–266 (1989).Google Scholar
  42. 42.
    Hosoki T, Kigo T, Shiraishi K: Transformation and regeneration of broccoli (Brassica oleracea var.italica) mediated byAgrobacterium rhizogenes. J Japan Soc Hort Sci 60: 71–75 (1991).Google Scholar
  43. 43.
    Hosoki T, Kanbe H, Kigo T: Transformation of ornamental tobacco and kale mediated byAgrobacterium tumefaciens andA. rhizogenes harbouring a reporter β-glucuronidase gene. J Japan Soc Hort Sci 63: 167–172 (1994).Google Scholar
  44. 44.
    Hosoki T, Kigo T: Transformation of Brussels sprouts (Brassica oleracea var.gemmifera Zenk.) byAgrobacterium rhizogenes harbouring a reporter β-glucuronidase gene. J Japan Soc Hort Sci 63: 589–592 (1994).Google Scholar
  45. 45.
    Jin S, Komari T, Gordon MP, Nester EW: Genes responsible for the supervirulence phenotype ofAgrobacterium tumefaciens A281. J Bact 169: 4417–4425 (1987).Google Scholar
  46. 46.
    Jones JDG, Gilbert DE, Grady KL, Jorgensen RA: T-DNA structure and gene expression in petunia plants transformed byAgrobacterium tumefaciens C58 derivatives. Mol Gen Genet 207: 478–485 (1987).Google Scholar
  47. 47.
    Jordan MC, McHughen A: Transformed callus does not necessarily regenerate transformed shoots. Plant Cell Rep 7: 285:287 (1988).Google Scholar
  48. 48.
    Jorgensen R, Synder C, Jones JDG: T-DNA is organized predominantly in inverted repeat structures in plants transformed withAgrobacterium tumefaciens C58 derivatives. Mol Gen Genet 207: 471–477 (1987).Google Scholar
  49. 49.
    Jouanin L: Restriction map of agropine-type Ri plasmid and its homologies with Ti plasmids. Plasmid 12: 91–102 (1984).Google Scholar
  50. 50.
    Kempin SA, Savidge B, Yanofsky MF: Molecular basis of the cauliflower phenotype inArabidopsis. Science 267: 522–525 (1995).Google Scholar
  51. 51.
    King GJ: Molecular genetics and breeding of vegetable brassicas. Euphytica 50: 97–112 (1990).Google Scholar
  52. 52.
    Lazzeri PA, Dunwell JM:In vitro shoot regeneration from seedling root segments ofBrassica oleracea andBrassica napus cultivars. Ann Bot 54: 341–350 (1984).Google Scholar
  53. 53.
    Lazzeri PA, Dunwell JM: Establishment of isolated root cultures ofBrassica species and regeneration from cultured-root segements ofBrassica oleracea var.italica. Ann Bot 54: 351–361 (1984).Google Scholar
  54. 54.
    Lin J-J, Assad-Garcia N, Kuo J: Effects ofAgrobacterium cell concentration on the transformation efficiency of tobacco andArabidopsis thaliana. Focus 16(3): 70–73 (1994).Google Scholar
  55. 55.
    Linn F, Heidmann I, Saedler H, Meyer P: Epigenetic changes in the expression of the maizeAI gene in Petunia hybrida: role of numbers of integrated gene copies and state of methylation. Mol Gen Genet 222: 329–336 (1990).Google Scholar
  56. 56.
    Matzke MA, Matzke AJM: Differential inactivation and methylation of a transgene in plants by two suppressor loci containing homologous sequences. Plant Mol Biol 16: 821–830 (1991).Google Scholar
  57. 57.
    Matzke MA, Neuhuber F, Matzke AJM: A variety of epistatic interactions can occur between partially homologous transgene loci brought together by sexual crossing. Mol Gen Genet 236: 379–389 (1993).Google Scholar
  58. 58.
    Matzke AJM, Neuhuber F, Park YD, Ambros PF, Matzke MA: Homology-dependent gene silencing in transgenic plants: epistatic silencing loci contain multiple copies of methylated transgenes. Mol Gen Genet 244: 219–229.Google Scholar
  59. 59.
    McBride KE, Svab Z, Schaaf DJ, Hogan PS, Stalker DM, Maliga P: Amplification of a chimericBacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco. Bio/technology 13: 362–365 (1995).Google Scholar
  60. 60.
    McCormick S, Niedermeyer J, Fry J, Barnason A, Horsch R, Fraley R: Leaf disc transformation of cultivated tomato (L. esculentum) usingAgrobacterium tumefaciens. Plant Cell Rep 5(2): 81–84 (1986).Google Scholar
  61. 61.
    McHughen A, Jordan M, Feist G: A preculture period prior toAgrobacterium inoculation increases production of transgenic plants. J Plant Physiol 135: 245–248 (1989).Google Scholar
  62. 62.
    Metz TD, Dixit R, Earle ED:Agrobacterium tumefaciens-mediated transformation of broccoli (Brassica oleracea var.italica) and cabbage (B. oleracea var.capitata). Plant Cell Rep 15: 287–292 (1995).Google Scholar
  63. 63.
    Metz TD, Roush RT, Tang JD, Shelton AM, Earle ED: Transgenic broccoli expressing a Bacillus thuringiensis insecticidal crystal protein: implications for pest resistance management strategies. Mol Breed 1: 309–317 (1995).Google Scholar
  64. 64.
    Meyer P, Heidmann I, Forkmann G, Saedler H: A new petunia flower colour generated by transformation of a mutant with a maize gene. Nature 330: 677–678 (1987).Google Scholar
  65. 65.
    Meyer P, Linn F, Heidmann I, Meyer HZA, Niedenhof I, Saedler H: Endogenous and environmental factors influence 35S promoter methylation of a maizeAI gene construct in transgenic petunia and its colour phenotype. Mol Gen Genet 231(3): 345–352 (1992).Google Scholar
  66. 66.
    Meyer P, Heidmann I, Niedenhorf I: Differences in DNA-methylation are associated with a paramutation phenomenon in transgenic petunia. Plant J 4: 89–100 (1993).Google Scholar
  67. 67.
    Meyer P, Heidmann I: Epigenetic variants of a transgenic petunia line show hypermethylation in transgene DNA: an indication for specific recognition of foreign DNA in transgenic plants. Mol Gen Genet 243: 390–399 (1994).Google Scholar
  68. 68.
    Meyer P: Understanding and controlling transgene expression. Trends Biotechnol 13: 332–337 (1995).Google Scholar
  69. 69.
    Mukhopadhyay A, Töpfer R, Pradhan AK, Sodhi YS, Steinbiß H-H, Schell J, Pental D: Efficient regeneration ofBrassica oleracea hypocotyl protoplasts and high frequency genetic transformation by direct DNA uptake. Plant Cell Rep 10: 375–379 (1991).Google Scholar
  70. 70.
    Mukhopadhyay A, Arumugam N, Nandakumar PBA, Pradhan AK, Gupta V, Pental D: Agrobacterium-mediated genetic transformation of oilseedBrassica campestris: transformation frequency is strongly influenced by the mode of shoot regeneration. Plant Cell Rep 11: 506–513 (1992).Google Scholar
  71. 71.
    Murata M, Orton TJ: Callus initiation and regeneration capacities inBrassica species, Plant Cell Tiss Organ Cult 11: 111–123 (1987).Google Scholar
  72. 72.
    Napoli C, Lemieux C, Jorgensen R: Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes intrans. Plant Cell 2: 279–289 (1990).Google Scholar
  73. 73.
    Narasimhulu SB, Prakash S, Chopra VL: Comparative shoot regeneration in diploid and amphidiploidBrassica species and their interspecific hybrids. Can J Bot 70: 1513–1514 (1992).Google Scholar
  74. 74.
    Neuhuber F, Park YD, Matzke AJM, Matzke MA: Susceptibility of transgene loci to homology-dependent gene silencing. Mol Gen Genet 244: 230–241 (1994).Google Scholar
  75. 75.
    Niedz RP, Sussman MR, Satterlee JS: Green fluorescent protein: anin vitro reporter of plant gene expression. Plant Cell Rep 14: 403–406 (1995).Google Scholar
  76. 76.
    Ockendon DJ: The ploidy of plants obtained from anther culture of cauliflowers (Brassica oleracea var.botrytis) Ann Appl Biol 113: 319–325 (1988).Google Scholar
  77. 77.
    Oeller PW, Wong LM, Taylor LP, Pike DA, Theologis A: Reversible inhibition of tomato fruit senescence by antisense RNA. Science 254: 437–439 (1991).Google Scholar
  78. 78.
    Ohlsson M, Eriksson T: Transformation ofBrassica campestris protoplasts withAgrobacterium tumefaciens. Hereditas 108: 173–177 (1988).Google Scholar
  79. 79.
    Oono Y, Handa T, Kanaya K, Uchimiya H: The TL-DNA gene of Ri plasmids responsible for dwarfness of tobacco plants. Jpn J Genet 62: 501–505 (1987).Google Scholar
  80. 80.
    Passelègue E, Kerlan C: Transformation of cauliflower (Brassica oleracea var.botrytis) by transfer of cauliflower mosaic virus gene through cocultivation with virulent and avirulent strains ofAgrobacterium. Plant Sci 113: 79–89 (1996).Google Scholar
  81. 81.
    Peach C, Velten J: Transgene expression variability (position effect) of CAT and GUS reporter genes driven by linked divergent T-DNA promoters. Plant Mol Biol 17: 49–60 (1991).Google Scholar
  82. 82.
    Petit A, David C, Dahl GA, Ellis JG, Guyon P, Casse-Delbart F, Tempé J: Further extension of the opine concept: plasmids inAgrobacterium rhizogenes cooperate for opine degradation. Mol Gen Genet 190: 204–214 (1983).Google Scholar
  83. 83.
    Pierpoint WS: Targets for the introduction of pest and disease resistance into crops by genetic engineering. IACR integrated Approach to Crop Research. IACR — Long Ashton Research Station, April 1995.Google Scholar
  84. 84.
    Pogson BJ, Downs CG, Davies KM: Differential expression of two 1-aminocyclopropane-1-carboxylic acid oxidase genes in broccoli after harvest. Plant Physiol 108: 651–657 (1995).Google Scholar
  85. 85.
    Pogson BJ, Downs CG, Davies KM, Morris SC: Nucleotide sequence of a cDNA clone encoding 1-aminocyclopropane-1-carboxylic acid synthase from broccoli. Plant Physiol 108: 857–858 (1995).Google Scholar
  86. 86.
    Pua EC, Mehra-Palta A, Nagy F, Chua NH: Transgenic plants ofBrassica napus L. Bio/technology 5: 815–817 (1987).Google Scholar
  87. 87.
    Radke SE, Turner JC, Facciotti D: Transformation and regeneration ofBrassica rapa usingAgrobacterium tumefaciens. Plant Cell Rep 11: 499–505 (1992).Google Scholar
  88. 88.
    Reynolds JF: Regeneration in vegetable species. In: Vasil IK (ed) Cell Culture and Somatic Cell Genetics of Plants, vol. 3. Plant Regeneration and Genetic Variability, pp. 151–178. Academic Press, London (1986).Google Scholar
  89. 89.
    Sangwan RS, Bourgeois Y, Brown S, Vasseur G, Sangwan-Norreel B: Characterization of competent cells and early events ofAgrobacterium-mediated genetic transformation inArabidopsis thaliana. Planta 188: 439–456 (1992).Google Scholar
  90. 90.
    Schmülling T, Röhrig H, Pilz S, Walden R, Schell J: Restoration of fertility by antisense RNA in genetically engineered male sterile tobacco plants. Mol Gen Genet 237: 385–394 (1993).Google Scholar
  91. 91.
    Schmülling T, Schell J: Transgenic tobacco plants regenerated from leaf disks can be periclinal chimeras. Plant Mol Biol 21: 705–708 (1993).Google Scholar
  92. 92.
    Schmülling T, Schell J, Spena A: Single genes fromAgrobacterium rhizogenes influence plant development. EMBO J 7: 2621–2629 (1988).Google Scholar
  93. 93.
    Scorza R, Zimmerman TW, Cordts JM, Footen KJ: Horticultural characteristics of transgenic tobacco expressing therolC gene fromAgrobacterium rhizogenes. J Am Soc Hort Sci 119: 1091–1098 (1994).Google Scholar
  94. 94.
    Sheikholeslam SN, Weeks DP: Acetosyringone promotes high efficiency transformation ofArabidopsis thaliana explants byAgrobacterium tumefaciens. Plant Mol Biol 8: 291–298 (1987).Google Scholar
  95. 95.
    Slocum MK, Figdore SS, Kennard WC, Suzuki J, Osborn TC: Linkage arrangement of restriction fragment length polymorphism loci inBrassica oleracea. Theor Appl Genet 80: 57–64 (1990).Google Scholar
  96. 96.
    Smyth DR: Origin of the cauliflower. Curr Biol 5: 361–363 (1995).Google Scholar
  97. 97.
    Song KM, Osborn TC, Williams PH:Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RLFPs) 1. Genome evolution of diploid and amphidiploid species. Theor Appl Genet 75: 784–794 (1988).Google Scholar
  98. 98.
    Spena A, Schmülling T, Koncz C, Schell JS: Independent and synergistic activity ofrolA, B abd C loci in stimulating abnormal growth in plants. EMBO J 6: 3891–3899 (1987).Google Scholar
  99. 99.
    Spena A, Aalen RB, Schulze SC: Cell-autonomous behaviour of therolC gene ofAgrobacterium rhizogenes during leaf development a visual assay for transposson excision in transgenic plants. Plant Cell 1: 1157–1164 (1989).Google Scholar
  100. 100.
    Srivastava V, Reddy AS, Guha-Mukhejee S: Transformation and regeneration ofBrassica oleracea mediated by an oncogenicAgrobacterium tumefaciens. Plant Cell Rep 7: 504–507 (1988).Google Scholar
  101. 101.
    Spielmann A, Simpson RB: T-DNA structure in transgenic tobacco plants with multiple integration sites. Mol Gen Genet 205: 34–41 (1986).Google Scholar
  102. 102.
    Stachel SE, Nester EW, Zambryski PC: A plant cell factor inducesAgrobacterium tumefaciens vir gene expression. Proc Natl Acad Sci USA 83: 379–383 (1986).Google Scholar
  103. 103.
    Tempé J, Casse-Delbart F: Plant gene vectors and genetic transformation:Agrobacterium Ri Plasmids. In: Vasil IK (ed) Cell Culture and Somatic Cell Genetics of Plants, vol. 6, pp. 25–49. Academic Press, London, (1987).Google Scholar
  104. 104.
    Tepfer D: Genetic transformation usingAgrobacterium rhizogenes. Physiol Planta 79: 140–146 (1990).Google Scholar
  105. 105.
    Thomzik JE: Transformation in oilseed rape (Brassica napus L.). In: Bajaj YPS (ed) Biotechnology in Agriculture and Forestry, vol. 23. Plant Protoplasts and Genetic Engineering IV, pp. 170–182. Springer-Verlag, Berlin, Heidelberg (1993).Google Scholar
  106. 106.
    Toriyama K, Stein JC, Nasrallah ME, Nasrallah JB: Transformation ofBrassica oleracea with anS-locus gene fromB. campestris changes the self-incompatibility phenotype. Theor Appl Genet 81: 769–776 (1991).Google Scholar
  107. 107.
    Trail F, Richards C, Wu F-S: Genetic manipulation inBrassica. In: Bajaj YPS (ed) Biotechnology in Agriculture and Forestry, vol. 9, Plant Protoplasts and Genetic Engineering II, pp. 197–215. Springer-Verlag, Berlin, Heidelberg (1989).Google Scholar
  108. 108.
    vanBlokland R, van derGeest N, Mol JNM, Kooter JM: Transgene-mediated suppression of chalcone synthase expression inPetunia hybrida results from an increase in RNA turnover. Plant J 6: 861–877 (1994).Google Scholar
  109. 109.
    van derKrol AR, Mur LA, Beld M, Mol JNM, Stuitje AR: Flavonoid genes in petunia: addition of a limited number of gene copies may lead to suppression of gene expression. Plant Cell 2: 291–199 (1990).Google Scholar
  110. 110.
    vanWordragen MF, Dons HJM:Agrobacterium tumefaciens-mediated transformation of recalcitrant crops. Plant Mol Biol Rep 10: 12–36 (1992).Google Scholar
  111. 111.
    Vaucheret H: Identification of a general silencer for 19S and 35S promoters in a transgenic tobacco plant. 90bp of homology in the promoter sequence are sufficient for transinactivation CR Acad Sci Paris, Sciences de la vie/Life Sciences 316: 1471–1483 (1993).Google Scholar
  112. 112.
    Verma SC, Rees H: Nuclear DNA and the evolution of allotet-raploid Brassicae. Heredity 33: 61–68 (1974).Google Scholar
  113. 113.
    White FF, Taylor BH, Huffman GA, Gordon MP, Nester EW: Molecular genetic analysis of the transfered DNA regions of the root-inducing plasmid ofAgrobacterium rhizogenes. J Bact 164: 33–44 (1985).Google Scholar
  114. 114.
    Wijbrandi J, deBoth MTJ: Temperate vegetable crops. Sci Hortic 55: 37–63 (1993).Google Scholar
  115. 115.
    Williams J, Pink DAC, Biddington NL: Effect of silver nitrate on long term culture and regeneration of callus fromBrassica oleracea var.gemmifera. Plant Cell Tissue Organ Cult 21: 61–66 (1990).Google Scholar
  116. 116.
    Zambryski PC: Chronicles from theAgrobacterium-plant cell DNA transfer story. Annu Rev Plant Physiol Plant Mol Biol 43: 465–490 (1992).Google Scholar
  117. 117.
    Zambryski P, Joos H, Genetello C, Leemans M, VanMontagu M, Schell J: Ti Plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J 2: 2143–2150 (1983).Google Scholar
  118. 118.
    Zambryski P, Tempe J, Schell J: Transfer and function of T-DNA genes fromAgrobacterium Ti and Ri plasmids in plants. Cell 56: 193–201 (1989).Google Scholar
  119. 119.
    Zee SY, Johnson BB: Cole crops. In: Ammirato PV, Evans DA, Sharp WR, Yamada Y (eds) Handbook of Plant Cell Culture, vol. 3, pp. 227–246. Macmillan, New York (1984).Google Scholar
  120. 120.
    Zhu Q, Maher EA, Masoud S: Enhanced protection against fungal attack by constitutive co-expression of chitinase and glucanase genes in transgenic tobacco. Bio/technology 12: 807–812 (1994).Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • I. J. Puddephat
    • 1
  • T. J. Riggs
    • 1
  • T. M. Fenning
    • 1
  1. 1.Department of Breeding and GeneticsHorticulture Research InternationalWellesbourneUK

Personalised recommendations