Chemistry of Natural Compounds

, Volume 10, Issue 3, pp 303–308 | Cite as

Synthesis and mass-spectral study of the luciferin of Luciola mingrelica

  • B. A. Rubin
  • A. N. Kost
  • G. P. Kukarskikh
  • M. A. Yurovskaya


1. The synthesis of the luciferin ofLuciola mingrelica, i.e., D(−)-2-(6-hydroxybenzothiazol-2-yl)-3,4-dihydrothiazole-4-carboxylic acid, has been performed with some modifications.

2. It has been shown that in the mass spectrum of luciferin the most characteristic ions are those that correspond to decarboxylation, aromatization, and, finally, the elimination of the thiazoline part of the molecule. The spectra of the intermediate products of synthesis are characterized by competing processes of the elimination of the substituent from position 2 of the benzothiazole molecule, and, to a small extent, the “phenolic” fragmentation of the benzene ring.

3. Synthetic luciferin in combination with purified luciferase of the glow wormLuciola mingrelica can be used for the luminescence determination of the concentration of ATP in biological materials.


Adenylate Kinase Luciferin Sodium Bicarbonate Solution Thiazoline Pyridine Hydrochloride 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    C. J. Spruit, Enzymol.,13, 191 (1949).Google Scholar
  2. 2.
    E. H. White, F. McCapra, G. F. Field, and W. D. McElroy, J. Am. Chem. Soc.,83, 2402 (1961).CrossRefGoogle Scholar
  3. 3.
    J. Walker, J. Chem. Soc., (C), 1522 (1968).Google Scholar
  4. 4.
    H. H. Seliger, W. D. McElroy, and E. H. White, Proc. Nat. Acad. Sci., U.S.47, 1129 (1961).CrossRefGoogle Scholar
  5. 5.
    B. L. Strehler and S. R. Totter, Arch. Bioch. Bioph.,40, 28 (1952).CrossRefGoogle Scholar
  6. 6.
    M. E. Ladygina, Sel'skokhoz. Biol.,2, No. 3, 416 (1967).Google Scholar
  7. 7.
    B. Bitler and W. D. McElroy, Arch. Bioch. Bioph.,72, 358 (1957).CrossRefGoogle Scholar
  8. 8.
    E. H. White, H. Worther, H. H. Seliger, W. D. McElroy, J. Am. Chem. Soc.,88, 2015 (1966).CrossRefGoogle Scholar
  9. 9.
    E. H. White, F. McCapra and G. F. Field, J. Am. Chem. Soc.,85, 337 (1963).CrossRefGoogle Scholar
  10. 10.
    S. Seto, K. Ogura, Y. Wischiyama, Bull. Chem. Soc., Japan,36, 331, (1963).CrossRefGoogle Scholar
  11. 11.
    E. H. White, H. Worther, G. F. Field, and W. D. McElroy, J. Org. Chem., 30, 2344 (1965).CrossRefGoogle Scholar
  12. 12.
    G. P. Kukarskikh, T. E. Krendeleva, and A. B. Rubin, Biofizika17, No. 1, 85 (1972).PubMedGoogle Scholar
  13. 13.
    A. N. Kost, G. A. Golubeva, L. A. Sviridova, Khim. Prirodn. Soedin., No. 4, 495 (1973).Google Scholar
  14. 14.
    B. J. Millord and A. F. Temple, Organ. Mass. Spectrom.,1, 285 (1968).CrossRefGoogle Scholar
  15. 15.
    G. M. Clarke, R. Grigg, and D. C. Williams, J. Chem. Soc., (B), 339 (1961).Google Scholar
  16. 16.
    A. Friedman, C. R. Acad. Sci., C269, 273 (1969).Google Scholar
  17. 17.
    H. Ogura, S. Sugimoto, and T. Ho, Organ. Mass. Spectrom.,3, 1341 (1970).CrossRefGoogle Scholar
  18. 18.
    R. A. Khmel'nitskii, E. A. Kupina, S. L. Gusinskaya, and V. Yu. Tell', Khim. Prirodn. Soedin., No. 10, 1372 (1972).Google Scholar
  19. 19.
    M. J. Rix and B. R. Webster, Organ. Mass. Spectrom.,5, 311 (1971).CrossRefGoogle Scholar
  20. 20.
    E. Barni, J. Heterocycl. Chem.,3, 501 (1972).CrossRefGoogle Scholar
  21. 21.
    J. Beynon, Mass Spectrometry and Its Application to Organic Chemistry, Elsevier, Amsterdam (1960).Google Scholar
  22. 22.
    C. G. Stuckwisch, J. Am. Chem. Soc.,71, 4317 (1949).CrossRefGoogle Scholar
  23. 23.
    O. H. Lowry, N. J. Rosebrough, A. I. Farr, and R. Randall, J. Biol. Chem.,193, 265 (1951).PubMedPubMedCentralGoogle Scholar
  24. 24.
    S. P. Calowick and N. O. Kaplan, Methods in Enzymology, Vol. 2, Academic Press (1965), p. 598.Google Scholar

Copyright information

© Plenum Publishing Corporation 1975

Authors and Affiliations

  • B. A. Rubin
  • A. N. Kost
  • G. P. Kukarskikh
  • M. A. Yurovskaya

There are no affiliations available

Personalised recommendations