Optical and Quantum Electronics

, Volume 27, Issue 5, pp 411–420 | Cite as

Second-harmonic generation in poled films of nonlinear optical polymer composites

  • Sooman Lee
  • Byoungchoo Park
  • Sin-Doo Lee
  • Gwangseo Park
  • Y. D. Kim
Fundamental Research (II)

Abstract

The second-harmonic generation (SHG) has been measured for studying the molecular ordering and its relaxation process in poled states of two different nonlinear optical (NLO) polymer composites.p-Nitroaniline (pNA) and the azo dye Disperse Orange 3 (DO3) are uniformly dispersed in photopolymer matrices followed by poling. Two different composites made-up of 1 wt% of pNA and 2.5 wt% of DO3 are poled at 200 MV m-1 and 80 MV m-1, respectively. One of the second-order NLO coefficients,d33, was found to be 0.27 pm V-1 for the pNA-doped film and 0.20 pm V-1 for the DO3-doped film. While for the latter the ratiod33/d33 (∼3.1) is consistent with the value of 3 in the low-field approximation, for the former the value of 3.5 indicates that higher-order effects of the poling field play a significant role in the NLO process. It is suggested that the SHG relaxation dynamics is also closely related to the UV absorption of the NLO molecules in a photopolymer matrix.

Keywords

Significant Role Communication Network Relaxation Process Pole State Polymer Composite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. N.Prasad andD. J.Williams,Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).Google Scholar
  2. 2.
    D. S. Chemla andJ. Zyss,ACS Symp. Ser. 233 (1983) chap. 1.Google Scholar
  3. 3.
    P. N.Prasad andD. R.Ulrich,Nonlinear Optics and Electroactive Polymers (Plenum, New York, 1988).Google Scholar
  4. 4.
    Y.Shuto, H.Takara, M.Mano andT.Kaino,Jap. J. Appl. Phys. 28 (1989) 2508.Google Scholar
  5. 5.
    D.Hass, H.Yoon, T.Man, G.Cross, S.Mann andN.Parsons,Proc. Soc. Photo-Opt. Instrum. Eng. 1147 (1989) 222.Google Scholar
  6. 6.
    J. L.Ouder,J. Chem. Phys. 67 (1977) 446.Google Scholar
  7. 7.
    N.Bloembergen andP. S.Pershan,Phys. Rev. Lett. 14 (1965) 1029.Google Scholar
  8. 8.
    K. D.Singer, J. E.Sohn andS.Lalama,Appl. Phys. Lett. 49 (1986) 248.Google Scholar
  9. 9.
    D. R. Robello, C. S. Willand, M. Scozzafava, A. Ulman andD. J. Williams,ACS Symp. Ser. 455 (1990) chap. II-7.Google Scholar
  10. 10.
    J.Jerphagnon andS. K.Kurtz,J. Appl. Phys. 41 (1970) 1667.Google Scholar
  11. 11.
    K. D.Singer, M. G.Kuzyk andJ. E.Sohn,J. Opt. Soc. Am. B 4 (1987) 968.Google Scholar
  12. 12.
    W. M.Yunus andA. A.Rahman,Appl. Opt. 27 (1988) 3341.Google Scholar
  13. 13.
    S. K.Kurtz, J.Jerphagnon andM. M.Choy,Landorlt-Boernstein Numerical Data and Functional Relationships in Science and Technology, vol. 11 (Springer, New York, 1979) p. 671.Google Scholar
  14. 14.
    M.Eich, A.Sen, H.Looser, G. C.Bjorklund, J. D.Swalen, R.Twieg andD. Y.Yoon,J. Appl. Phys. 66 (1989) 2559.Google Scholar
  15. 15.
    J. L.Ouder andD. S.Chemla,J. Chem. Phys. 66 (1977) 2664.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Sooman Lee
    • 1
  • Byoungchoo Park
    • 1
  • Sin-Doo Lee
    • 1
  • Gwangseo Park
    • 1
  • Y. D. Kim
    • 1
  1. 1.Physics DepartmentSogang UniversitySeoulKorea

Personalised recommendations