Advertisement

Optical and Quantum Electronics

, Volume 27, Issue 5, pp 379–386 | Cite as

Mid-infrared light emission characteristics of Ho3+-doped chalcogenide and heavy-metal oxide glasses

  • Yong Beom Shin
  • Joo Nyung Jang
  • Jong Heo
Fundamental Research (I)

Abstract

Emission characteristics of Ho3+-doped heavy-metal oxide and chalcogenide glasses were investigated and compared with those of conventional oxide glasses. In addition to the fluorescence at approximately 1.2 μm (5/6 → 5/8) and 2.0 μm (5/7 → 5/8), another mid-infrared emission was observed at 2.9 μm from the transition 5/6 → 5/7. The calculated radiative transition probability and multiphonon decay rate of the latter transition using Judd-Ofelt analysis indicated that the occurrence of the 2.9 μm fluorescence was directly related to the low vibrational phonon energy of the host glasses.

Keywords

Decay Rate Light Emission Radiative Transition Emission Characteristic Phonon Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. H.Dumbaugh andJ. C.Lapp,J. Am. Ceram. Soc. 75 (1992) 2315.Google Scholar
  2. 2.
    W. H.Dumbaugh,Phys. Chem. Glasses 27 (1986) 119.Google Scholar
  3. 3.
    W.-H.Hung, C. S.Ray andD. E.Day,J. Am Ceram. Soc. 77 (1994) 1017.Google Scholar
  4. 4.
    F.Miyaji andS.Sakka,J. Non-Cryst. Solids 134 (1991) 77.Google Scholar
  5. 5.
    F.Miyaji, K.Tadanaga, T.Yoko andS.Sakka,J. Non-Cryst. Solids 139 (1992) 268.Google Scholar
  6. 6.
    T.Miyashita andT.Manabe,IEEE J. Quantum Electron. QE 18 (1982) 1432.Google Scholar
  7. 7.
    J. A.Savage,Mater. Sci. Rep. 2 (1987) 99.Google Scholar
  8. 8.
    R.Reisfeld, J.Hormadaly andA.Murenevich,Chem. Phys. Lett. 38 (1976) 188.Google Scholar
  9. 9.
    R.Reisfeld, andJ.Hormadaly,J. Chem. Phys. 64 (1976) 3207.Google Scholar
  10. 10.
    J.Hormadaly andR.Reisfeld,Chem.Phys. Lett. 45 (1977) 436.Google Scholar
  11. 11.
    R.Reisfeld, J.Hormadaly andA.Murenevich,J. Non-Cryst. Solids 29 (1978) 323.Google Scholar
  12. 12.
    B. R.Judd,Phys. Rev. 127 (1962) 750.Google Scholar
  13. 13.
    G. S.Ofelt,J. Chem. Phys. 37 (1962) 511.Google Scholar
  14. 14.
    M. J.Weber, B. H.Matsinger, V. L.Donlan andG. T.Surratt,J. Chem. Phys. 57 (1972) 562.Google Scholar
  15. 15.
    K.Tanimura, M. D.Shinn, W. A.Sibley, M. G.Drexhage andR. N.Brown,Phys. Rev. B 30 (1984) 2429.Google Scholar
  16. 16.
    R.Reisfeld,Ann. Chim Fr. 7 (1982) 147.Google Scholar
  17. 17.
    Y.Subramanyam, L. R.Moorthy andS. V. J.Lakshman,J. Non-Crosyt. Solids 139 (1992) 67.Google Scholar
  18. 18.
    R.Reisfeld, E.Greenberg, R. N.Brown andM. G.Drexhage,Chem Phys. Lett. 95 (1983) 91.Google Scholar
  19. 19.
    C. B.Layne, W. H.Lowdermilk andM. J.Weber,Phys. Rev. B 16 (1977) 10.Google Scholar
  20. 20.
    R.Reisfeld,Chem. Phys. Lett. 118 (1985) 25.Google Scholar
  21. 21.
    G.Lucovsky, F. L.Galeener, R. C.Keezer, R. H.Geils andH. A.Six,Phys. Rev. B 10 (1974) 5134.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • Yong Beom Shin
    • 1
  • Joo Nyung Jang
    • 1
  • Jong Heo
    • 1
  1. 1.Department of Materials Science and EngineeringPohang University of Science and TechnologyPohang, KyungbukKorea

Personalised recommendations