Skip to main content
Log in

Pyrite framboids and their development: a new conceptual mechanism

  • Published:
Geologische Rundschau Aims and scope Submit manuscript

Abstract

It has been suggested that the two morphologies of sedimentary pyrite, framboids and euhedra, may reflect two distinct pathways of pyrite formation. Framboids form indirectly via iron monosulphides, whereas euhedra form from direct precipitation from solution. A third pathway which is bridging these two forms is proposed here, namely the continuous growth from a monosulphide globule through framboids to a euhedral single crystal. It is also suggested that framboids probably occur over a range of three orders of magnitude, from the least complex microframboids through framboids to polyframboids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn JH, Buseck PR (1990) Hematite nanospheres of possible colloidal origin from a Precambrian banded iron formation. Science 250: 111–113

    Google Scholar 

  • Amstutz GC (1963) Accessories on pyrite, pyrite zoning, and zoned pyrite. Schweiz Mineral Petrogr Mitt 43: 111–122

    Google Scholar 

  • Amstutz GC, Park WC, Schot EH, Love LG (1967) Orientation of framboidal pyrite in shale. Mineral Depos 1: 317–321

    Google Scholar 

  • Berner RA (1969) The synthesis of framboidal pyrite. Econ Geol 64: 383–384

    Google Scholar 

  • Berner RA (1970) Sedimentary pyrite formation. Am J Sci 268: 1–23

    Google Scholar 

  • Berner RA, Baldwin T, Holdren Jr GR (1979) Authigenic iron sulfides as paleosalinity indicators. J Sediment Petrol, 49: 1345–1350

    Google Scholar 

  • Bianconi PA, Lin J, Strzelecki AR (1991) Crystallization of an inorganic phase controlled by a polymer matrix. Nature 349: 315–317

    Google Scholar 

  • Canfield DE (1989) Reactive iron in marine sediments. Geochim Cosmochim Acta 53: 619–632

    Google Scholar 

  • Canfield DE, Berner RA (1987) Dissolution and pyritization of magnetite in anoxic marine sediments. Geochim Cosmochim Acta 51: 645–659

    Google Scholar 

  • Chauchan DS (1974) Diagenetic pyrite from the lead-zinc deposits of Zawar, India. Mineral Depos 9: 69–73

    Google Scholar 

  • Chen TT (1978) Colloform and framboidal pyrite from the Caribou deposit New Brunswick. Can. Mineral 16: 9–15

    Google Scholar 

  • Dameron CT, Reese RN, Mehra RK, et al. (1989) Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338: 596–597

    Google Scholar 

  • Degens ET, Okada H, Honjo S, Hathaway JC (1972) Microcrystalline sphalerite in resin globules suspended in Lake Kivu, East Africa. Mineral Depos 7: 1–12

    Google Scholar 

  • Duncan MA, Rouvray DH (1989) Microclusters. Sci Am Dec: 60–65

  • Elverhoi A (1977) Origin of framboidal pyrite in clayey Holocene sediments and in Jurassic black shale in the nortwestern part of the Barents Sea. Sedimentology 19: 591–595

    Google Scholar 

  • Fabricius F (1961) Die Strukturen des “Rogenpyrits” (Koessener Schichten, Raet) als Beitrag zum Problem der “Vererzten Bakterien”. Geol Rundsch 51: 647–657

    Google Scholar 

  • Farina M, Esquivel DMS, Lins de Barros (1990) Magnetic ironsulphur crystals from a magnetotactic microorganism. Nature 343: 256–258

    Google Scholar 

  • Farrand M (1970) Framboidal sulphides precipitated synthetically. Mineral Depos 5: 237–247

    Google Scholar 

  • Goldhaber MB, Kaplan IR (1974) The sulfur cycle. In: Goldberg ED, ed. The Sea. Wiley, New York, Vol. 5: 569–655

    Google Scholar 

  • Honjo S, Fischer AG, Garrison R (1965) Geopetal pyrite in fine-grained limestones. J Sedim Petrol 35: 480–488

    Google Scholar 

  • Hossain A (1975) The occurrence of polyframboidal pyrite in a beach sand deposit, Cox's Bazar, Bangladesh. Am Mineral 60: 157–158

    Google Scholar 

  • Howarth RW (1979) Pyrite: its rapid formation in a salt marsh and its importance to ecosystem metabolism. Science 203: 49–51

    Google Scholar 

  • Kalliokoski J (1965) Framboids: colloid-crystals of pyrite [abstract] Econ Geol 60: 1562

    Google Scholar 

  • Kalliokoski J (1974) Pyrite framboid: animal, vegetable, or mineral? Geology 2: 26–27

    Google Scholar 

  • Kalliokoski J, Cathles L (1969) Morphology, mode of formation, and diagenetic changes in framboids. Bull Geol Soc Finland 41: 125–133

    Google Scholar 

  • Kanehira K, Bachinski D (1967) Framboidal pyrite and concentric features in ores from the Tilt Cove mine, N. E. Newfoundland. Can Min 9: 124–127

    Google Scholar 

  • Kizilshtein LJ, Minaeva LG (1972) Origin of the framboidal pyrite. Dokl Akad Nauk SSSR 206: 1187–1189 (in Russian)

    Google Scholar 

  • Kosacz R, Sawlowicz Z (1983) Framboidal pyrite from the copper deposit on the Fore-Sudetic monocline, Poland. Rudy Metale 8: 292–297 (in Polish)

    Google Scholar 

  • Kribek B (1975) The origin of framboidal pyrite as a surface effect of sulphur grains. Mineral Depos 10: 389–396

    Google Scholar 

  • Laufer EE, Scott JD, Packwood R (1985) Inhibition of pyrite growth by amorphous carbon. Can Mineral 23: 57–60

    Google Scholar 

  • Locquin MV, Weber C (1978) Origine et structure des membranes organiques cellulaires des moneres archeo-paleozoiques. C R 103 e Congr Nat Soc Savantes Nancy 1978 (Sect Sci) 2: 27–28

    Google Scholar 

  • Lougheed MS, Mancuso JJ (1973) Hematite framboids in the Negaunee Iron Formation, Michigan: evidence for their biogenic origin. Econ Geol 68: 202–209

    Google Scholar 

  • Love LG (1958) Microorganisms and the presence of syngenetic pyrite. Q J Geol Soc London 113: 429–440

    Google Scholar 

  • Love LG (1962) Biogenic primary sulfide of the Permian Kupferschiefer and Marl Slate. Econ Geol 57: 350–366

    Google Scholar 

  • Love LG (1965) Micro-organic material with diagenetic pyrite from the Lower Proterozoic Mount Isa Shale and a Carboniferous shale. Proc Yorks Geol Soc 35: 187–202

    Google Scholar 

  • Love LG (1967) Early diagenctic iron sulphide in Recent sediments of the Wash (England). Sedimentology 9: 327–352

    Google Scholar 

  • Love LG (1971) Early diagenetic polyframboidal pyrite, primary and redeposited, from the Wenlockian Denbigh Grit Group, Conway, North Wales, UK. J Sedim Petrol 41: 1038–1044

    Google Scholar 

  • Love LG, Amstutz GC (1966) Review of microscopic pyrite from the Devonian Chattanooga shale and Rammelsberg Banderz. Fortschr Miner 43: 273–309

    Google Scholar 

  • Love LG, Amstutz GC (1969) Framboidal pyrite in two andesites. N Jarb Miner Mh 3: 97–108

    Google Scholar 

  • Love LG, Brockley H (1973) Peripheral radial texture in framboids of polyframboidal pyrite. Fortschr Miner 50: 264–269

    Google Scholar 

  • Love LG, Zimmerman DO (1961) Bedded pyrite and microorganisms from the Mount Isa Shale. Econ Geol 56: 873–896

    Google Scholar 

  • Love LG, Al-Kaisy ATH, Brockley H (1984) Mineral and organic material in matrices and coatings of framboidal pyrite from Pennsylvanian sediments, England. J Sedim Petrol 54: 869–876

    Google Scholar 

  • Luther GW III, Giblin A, Howarth RW, Ryans RA (1982) Pyrite and oxidized iron mineral phases formed from pyrite oxidation in salt marsh and estuarine sediments. Geochim Cosmochim Acta 46: 2665–2669

    Google Scholar 

  • Mandelbrot BB (1982) The Fractal Geometry of Nature. San Francisco: 460 pp

  • Mann S (1988) Molecular recognition in biomineralization. Nature 332: 119–124

    Google Scholar 

  • Mann S, Sparks NHC, et al. (1990) Biomineralization of ferrimagnetic greigite (Fe3S4) and iron pyrite (FeS2) in a magnetotactic bacterium. Nature 343: 258–261

    Google Scholar 

  • Massaad M (1974) Framboidal pyrite in concretions. Mineral Depos 9: 87–89

    Google Scholar 

  • McNeil DH (1990) Stratigraphy and paleoecology of the EoceneStellarima Assemblage Zone (pyrite diatom steinkerns) in the Beaufort-Mackenzie Basin, Arctic Canada. Bull Can Petrol Geol 38: 17–27

    Google Scholar 

  • Menon KK (1967) Origin of diagenetic pyrite in the Quilon Limestone, Kerala, India. Nature 213: 1219–1220

    Google Scholar 

  • Morrissey CJ (1972) A quasi-framboidal form of syn-sedimentary pyrite. Trans Instn Min Metall 81: B55-B56

    Google Scholar 

  • Murowchick JB, Barnes HL (1987) Effects of temperature and degree of supersaturation on pyrite morphology. Am Mineral 72: 1241–1250

    Google Scholar 

  • Neube A, Zweifel H, Amstutz GC (1978) On the occurrences of bravoite, framboidal pyrite, marcasite, pyrrhotite and possible plant remains in the Laiswall Lead and Zinc deposits, Sweden. N Jarb Miner Abh 132: 264–283

    Google Scholar 

  • Neves R, Sullivan HJ (1964) Modification of fossil spore exines associated with the presence of pyrite crystals. Micropaleontol 10: 443–452

    Google Scholar 

  • Ostwald J, England BM (1977) Notes on framboidal pyrite from Allandale New South Wales, Australia. Mineral Depos 12: 111–116

    Google Scholar 

  • Papunen H (1966) Framboidal texture of the pyritic layer found in a peat bog in SE Finland. Bull Comm Geol Finlande 222: 117–125

    Google Scholar 

  • Raiswell R (1982) Pyrite texture, isotopic composition, and the availability of iron. Am J Sci 282: 1244–1263

    Google Scholar 

  • Ramberg H, Ekstrom T (1964) Note on preferred orientation of pyrite cubes in grit layers in slate. N Jarb Miner Monatsh Dtsch 8: 246–251

    Google Scholar 

  • Ramdohr P (1955) Die Erzmineralien und ihre Verwachsungen. Akademie Verlag, Berlin: 875 pp

  • Raybould JG (1973) Framboidal pyrite associated with lead-zinc mincralisation in mid-Wales. Lithos 6: 175–182

    Google Scholar 

  • Rickard DT (1969) The chemistry of iron sulphide formation at low temperatures. Stockholm Contr Geol 20: 67–95

    Google Scholar 

  • Rickard DT (1970) The origin of framboids. Lithos 3: 269–293

    Google Scholar 

  • Rickard DT (1975) Kinetics and mechanism of pyrite formation at low temperatures. Am J Sci 275: 636–652

    Google Scholar 

  • Rickard DT (1989) Experimental concentration-time curves for the iron (II) sulphide precipitation process in aqueous solutions and their interpretation. Chem Geol 78: 315–324

    Google Scholar 

  • Russell MJ, Hall AJ, Turner D (1989) In vitro growth of iron sulphide chimneys: possible culture chambers for origin-of-life experiments. Terra Nova 1: 238–241

    Google Scholar 

  • Russell MJ, Hall AJ, Gize AP (1990) Pyrite and the origin of life. Nature 344: 387

    Google Scholar 

  • Rust GW (1935) Colloidal primary copper ores at Cornwall Mines, southeastern Missouri. J Geol 43: 398–426

    Google Scholar 

  • Sawlowicz Z (1987) Framboidal pyrite from the metamorphic Radzimowice Schists of Stara Gora (Lower Silesia, Poland). Mineral Polon 18: 57–67

    Google Scholar 

  • Sawlowicz Z (1992) Primary sulphide mineralization in Cu-Fe-S zones of Kupferschiefer, Fore-Sudetic monocline, Poland. Trans Instn Min Metall (See. B: Appl Earth Sci), 101: B1–138

    Google Scholar 

  • Sawlowicz Z (1990) Primary copper sulphides from the Kupferschiefer, Poland. Mineral Deposita, 25: 262–271

    Google Scholar 

  • Schallreuther R (1984) Framboidal pyrite in deep-sea sediments. Init Rep DSDP 75: 875–891

    Google Scholar 

  • Scheihing MH, Gluskoter HJ, Finkelman RB (1978) Intersticial networks of kaolinite within pyrite framboids in the Megis Coal of Ohio. J Sedim Petrol 48: 723–732

    Google Scholar 

  • Schneiderhoehn H (1923) Chalkographische Untersuchung des Mansfelder Kupferschiefers. N Jarb Miner Geol Palaontol 47: 1–38

    Google Scholar 

  • Schoonen MAA, Barnes HL (1991) Reactions forming pyrite and mareasite from solution. I Nucleation of FeS2 below 100°C. Submitted Geochim Cosmochim Acta 55: 1495–1504

    Google Scholar 

  • Skei JM (1988) Formation of framboidal iron sulfide in the water of a permanently anoxic fjord -Framvaren, South Norway. Mar Chem 23: 345–352

    Google Scholar 

  • Skripchenko NS (1968) Biogenic pyrite ore deposits. Dokl Akad Nauk SSSR 181: 177–179

    Google Scholar 

  • Solomon PJ (1967) Investigations into sulfide mineralization at Mount Isa, Queensland. Econ Geol 60: 737–765

    Google Scholar 

  • Spiro B, Rozenson I (1980) Distribution of iron species in some “oil shales” of the Judea Desert, Israel. Chem Geol 28: 41–54

    Google Scholar 

  • Steinike K (1963) A further remark on biogenic sulfides: inorganic pyrite spheres. Econ Geol 58: 998–1000

    Google Scholar 

  • Stene LP (1979) Polyframboidal pyrite in the tills of southwestern Alberta. Can I Earth Sci 16: 2053–2057

    Google Scholar 

  • Suk D, Peacor DR, Van Der Voo R (1990) Replacement of pyrite framboids by magnetite in limestone and implications for paleomagnetism. Nature 345: 611–613

    Google Scholar 

  • Sunagawa I (1957) Variation in the crystal habit of pyrite. Geol Surv Jp Rep 175: 1–47

    Google Scholar 

  • Sunagawa I, Endo Y, Nakai N (1971) Hydrothermal synthesis of framboidal pyrite. Soc Min Geol Jp Spec Issue 2: 10–14

    Google Scholar 

  • Sweeney RE, Kaplan IR (1973) Pyrite framboid formation: laboratory synthesis and marine sediments. Econ Geol 68: 618–634

    Google Scholar 

  • Taylor GR (1982) A mechanism for framboid formation as illustrated by a volcanic exhalative sediment. Miner Depos 17: 23–36

    Google Scholar 

  • Taylor GR (1983) A mechanism for framboid formation — the role of bacteria. Mineral Depos 18: 129–130

    Google Scholar 

  • Thomsen E, Vorren TO (1984) Pyritization of tubes and burrows from Late Pleistocene continental shelf sediments off North Norway. Sedimentology 31: 481–492

    Google Scholar 

  • Vallentyne JR (1963) Isolation of pyrite spherules from Recent sediments. Limnol Oceanogr 8: 16–30

    Google Scholar 

  • Wiese RG Jr, Fyfe WS (1986) Occurrences of iron sulfides in Ohio coals. Int J Coal Geol 6: 251–276

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professors G. C. Amstutz and L. G. Love for their unrivalled contribution to the knowledge of pyrite framboids

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sawlowicz, Z. Pyrite framboids and their development: a new conceptual mechanism. Geol Rundsch 82, 148–156 (1993). https://doi.org/10.1007/BF00563277

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00563277

Key words

Navigation