Geologische Rundschau

, Volume 82, Issue 1, pp 3–19 | Cite as

Subsidenz und tektonik des Saar-Nahe-Beckens (SW-Deutschland)

  • Andreas Henk


The Saar-Nahe-Basin in SW-Germany is one of the largest Permo-Carboniferous basins in the internal zone of the Variscides. Its evolution is closely related to movements along the Hunsrück Boundary Fault, which separates the Rhenohercynian and the Saxothuringian zones. Recent deep seismic surveys indicate that the Saar-Nahe-Basin formed in the hanging wall of a major detachment which soles out at lower crustal levels at about 16 km depth. Oblique extension along an inverted Variscan thrust resulted in the formation of a half-graben, within more than 8 km of entirely continental strata accumulated. The structural style within the basin is characterized by normal faults parallel to the basin axis and orthogonal transfer fault zones. Balanced cross-section construction and subsidence analysis indicate extension of the orogenically thickened lithosphere by 35%. Subsidence modeling shows discontinuous depth-dependent extension with laterally varying extension factors for crust and mantle lithosphere. Thus, the offset between maximum rift and thermal subsidence can be explained by a zone of mantle extension shifted laterally with respect to the zone of maximum crustal extension.

Key words

Saar-Nahe-Basin half-graben cross-section balancing subsidence analysis Permo-Carboniferous basin formation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderle H-J (1987) The evolution of the South Hunsrück and Taunus Borderzone. Tectonophysics, 137: 101–114; AmsterdamGoogle Scholar
  2. Arthaud F, Matte P (1977) Late Paleozoic strike-slip faulting in southern Europe and northern Africa: results of a right-lateral shear zone between the Appalachians and the Urals. Geol Soc Amer Bull 88: 1305–1320; BoulderGoogle Scholar
  3. Bachmann GH, Grosse S (1989) Struktur und Entstehung des Norddeutschen Beckens — geologische und geophysikalische Interpretation einer verbesserten Bouguer-Schwerekarte. Nds Akad Geowiss Veröfftl 2: 24–47; HannoverGoogle Scholar
  4. Behr H-J, Engel W, Franke W, Giese P, Weber K (1984) The Variscan Belt in Central Europe: main structures, geodynamic implications, open questions. Tectonophysics 109: 15–40; AmsterdamGoogle Scholar
  5. Behrmann J, Drozdzewski G, Heinrichs T, Huch M, Meyer W, Oncken O (1991) Crustal-scale balanced cross sections through the Variscan fold belt, Germany: the central EGT-segment. Tectonophysics 196: 1–21; AmsterdamGoogle Scholar
  6. Benek R (1989) Über jungpaläozoische Seitenverschiebungen in Mitteleuropa. Z geol Wiss 17: 559–568; BerlinGoogle Scholar
  7. Berthold G (1971) Zur Bruch- und Intrusionstektonik im südwestlichen Bereich des Pfälzer Sattelgewölbes. Dissertation, Universität Mainz: 133 S.; Mainz (unveröff.)Google Scholar
  8. Biddle KT, Christie-Blick N (1985) Glossary – strike-slip deformation, basin formation and sedimentation. In: Biddle KT, Christie-Blick, N (eds.): strike-slip deformation, basin formation and sedimentation. Soc Econ Paleontologists Mineralogist Spec Publ No 37, Soc Econ Paleontologists Mineralogists, Tulsa: 375–386Google Scholar
  9. Boy J (1989) Zur Lithostratigraphie des tiefsten Rotliegend (?Oberkarbon — ?Unter-Perm) im Saar-Nahe-Becken (SW-Deutschland). Mainzer geowiss Mitt 18: 9–42; MainzGoogle Scholar
  10. Boy JA, Fichter J (1988) Zur Stratigraphie des höheren Rotliegend im Saar-Nahe-Becken (Unter-Perm; SW-Deutschland) und seiner Korrelation mit anderen Gebieten. N Jb Geol Paläont Abh 176: 331–394; StuttgartGoogle Scholar
  11. Christie-Blick N, Biddle KT (1985) Deformation and basin formation along strike slip faults. In: Biddle KT, Christie-Blick N (eds.): strike-slip deformation, basin formation and sedimentation. Soc Econ Paleontologists Mineralogists Spec Publ No 37, Soc Econ Paleontologists Mineralogists, Tulsa: 1–34Google Scholar
  12. Cooper MA, Williams GD (1989) Inversion Tectonics. Blackwell Scient Publ, Oxford: 375 S.Google Scholar
  13. Dekorp Research Group (1991) Results of DEKORP 1 (BELCORP-DEKORP) deep seismic reflection studies in the western part of the Renish Massif. Geophys J Int 106: 203–227Google Scholar
  14. Donsimoni M (1981) Le bassin houiller lorrain. Synthése géologique. Bureau de Recherches Géologiques et Minières 117: 102 S.; ParisGoogle Scholar
  15. Dula WF (1991) Geometric models of listric normal faults and rollover folds. Amer Assoc Petrol Geol Bull 75: 1609–1625; TulsaGoogle Scholar
  16. Eisbacher GH, Lüschen E, Wickert F (1989) Crustal-Scale Thrusting and Extension in the Hercynian Schwarzwald and Vosges, Central Europe. Tectonics 8: 1–21; WashingtonGoogle Scholar
  17. Engel H (1985) Zur Tektogenese des Saarbrücker Hauptsattels und der südlichen Randüberschiebung. In: Drozdzewski G, Engel H, Wolf R, Wrede V (eds.): Beiträge zur Tiefentektonik westdeutscher Steinkohlenlagerstätten. Geologisches Landesamt Nordrhein-Westfalen, Krefeld: 217–235Google Scholar
  18. Etheridge MA (1986) On the reactivation of extensional fault systems. Phil Trans R Soc Lond A 317: 179–194Google Scholar
  19. Etheridge MA, Branson JC, Stuart-Smith PG (1987) The Bass, Gippsland and Otway Basins, southeast Australia: A branched rift system formed by continental extension. In: Beaumont C, Tankard AJ (ed.): Sedimentary basins and basin-forming mechanisms. Canadian Society of Petroleum Geologists, Calgary: 147–161Google Scholar
  20. Falke H (1974) Das Rotliegende des Saar-Nahe-Gebietes. Jber Mitt oberrh geol Ver NF 56: 1–14Google Scholar
  21. Flöttmann T, Oncken O (1992) Constraints on the evolution of the Mid-German Crystalline Rise — a study of outcrop west of the river Rhine. Geol Rundsch 81: 515–543Google Scholar
  22. Franke W (1989) Tectonostratigraphic units in the Variscan belt of Central Europe. Geol Soc Amer Spec Pap 230: 67–90; BoulderGoogle Scholar
  23. Franke W, Oncken O (1990) Geodynamic evolution of the North-Central Variscides. a comic strip. In: Freeman R, Giese P, Müller S (eds.): The European Geotraverse: integrative studies. Results form the Fifth Study Center: 187–194Google Scholar
  24. Frenzel G (1971) Die Mineralparagenese der Albersweiler Lamprophyre (Südpfalz). N Jb Miner Abh 115: 164–191Google Scholar
  25. Friedinger PJ (1988) BASTA — Subsidence and paleotemperature modeling of rift basins. Computers & Geoscience 14: 505–526Google Scholar
  26. Gibbs AD (1983) Balanced cross-section construction from seismic sections in areas of extensional tectonics. J Struct Geol 5: 153–160; OxfordGoogle Scholar
  27. Gibbs AD (1984) Structural evolution of extensional basin margins. J Geol Soc 141: 609–620, LondonGoogle Scholar
  28. Gibbs AD (1990) Linked fault families in basin formation. J Struct Geol 12: 795–803; OxfordGoogle Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Andreas Henk
    • 1
  1. 1.Institut für Geologie der Universität WürzburgWürzburgDeutschland

Personalised recommendations