Biochemical Genetics

, Volume 27, Issue 1–2, pp 77–90 | Cite as

Aspartate aminotransferase isozymes in the genusCapsella (Brassicaceae): Subcellular location, gene duplication, and polymorphism

  • Herbert Hurka
  • Stephanie Freundner
  • Anthony H. D. Brown
  • Ursula Plantholt
Article

Abstract

The subcellular location of aspartate aminotransferase isozymes (EC 2.6.1.1) in the genusCapsella(Brassicaceae) was studied. The diploid speciesC. grandiflora andC. rubella have three AAT isozymes, including one located in the plastids. Each locus is duplicated in the tetraploidCapsella bursa-pastoris. Variation at the plastid-coding locus exceeded that at the other loci.C. bursa-pastoris had some unique alleles not detected in the diploid species. Segregation in open-pollinated families revealed thatCapsella grandiflora was outcrossing, whereasC. rubella was highly inbred, with most populations homozygous or uniform at all three loci. Inheritance in the tetraploid colonizerC. bursa-pastoris is disomic. This species was also predominantly selfing with outcrossing rates between 2% and 10%.

Key words

aspartate aminotransferase allozymes plastid enzymes Capsella (Brassicaceae) polyploidization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bingham, E. T. (1980). Maximising heterozygosity in autopolyploids. In Lewis, W. H. (ed.)Polyploidy. Biological Relevance Plenum Press, New York, London, pp. 471–489.Google Scholar
  2. Brown, A. H. D. (1983). Barley. In Tanksley, S. D., and Orton, T. J. (eds.)Isozymes in Plant Genetics and Breeding, Part B Elsevier, Amsterdam, pp. 57–77.Google Scholar
  3. Brown, A. H. D., and Burdon, J. J. (1987). Mating systems and colonizing success in plants.Br. Ecol. Soc. Symp. 26115.Google Scholar
  4. Brown, A. H. D., and Marshall, D. R. (1981). Evolutionary changes accompanying colonization in plants. In Scudder, G. G. E., and Reveal, J. L. (eds.),Evolution Today, Proc. Sec. Int. Congr. Syst. Evol. Biol., pp. 351–363.Google Scholar
  5. Brown, A. H. D., Matheson, A. C., and Eldridge, K. G. (1975). Estimation of the mating system ofEucalyptus obliquar L'Herit. by using allozyme polymorphisms.Aust. J. Bot. 23931.Google Scholar
  6. Gallez, G. P., and Gottlieb, L. D. (1982). Genetic evidence for the hybrid origin of the diploid plantStephanomeria diegensis.Evolution 361158.Google Scholar
  7. Goodman, M. W., and Stuber, C. W. (1983). Maize. In Tanksley, S. D., and Orton, T. J. (eds.),Isozymes in Plant Genetics and Breeding, Part B Elsevier, Amsterdam, pp 1–33.Google Scholar
  8. Gottlieb, L. D. (1973). Genetic control of glutamate oxaloacetate transaminase isozymes in the diploid plantStephanomeria exigua and its allotetraploid derivative.Biochem. Genet. 997.Google Scholar
  9. Gottlieb, L. D. (1977). Evidence for duplication and divergence of the structural gene for phosphoglucose isomerase in diploid species ofClarkia.Genetics 86289.Google Scholar
  10. Gottlieb, L. D. (1982). Conservation and duplication of isozymes in plants.Science 216372.Google Scholar
  11. Gottlieb, L. D., and Weeden, N. F. (1981). Correlation between sub-cellular location and phosphoglucose isomerase variability.Evolution 351019.Google Scholar
  12. Huang, A. H. C., Liu, K. D. F., and Youles, R. J. (1976). Organelle-specific isozymes of aspartate-α-ketoglutarate transaminase in spinach leaves.Plant Physiol. 48110.Google Scholar
  13. Hurka, H., and Wöhrmann, K. (1977). Analyse der genetischen Variabilität natürlicher Populationen vonCapsella bursa-pastoris (Brassicaceae).Bot. Jahrb. Syst. 98120.Google Scholar
  14. Neuffer, B., and Hurka, H. (1986). Variation of development time until flowering in natural populations ofCapsella bursa-pastoris (Cruciferae).Plant Syst. Evol. 152277.Google Scholar
  15. Peiser, G. D., Lizada, M. C. C., and Yang, S. F. (1982). Sulfite-induced lipid peroxidation in chloroplasts as determined by ethane production.Plant Physiol. 70994.Google Scholar
  16. Pichersky, E., and Gottlieb, L. D. (1983). Evidence for duplication of the structural genes coding plastid and cytosolic isozymes of triose phosphate isomerase in diploid species ofClarkia.Genetics 105421.Google Scholar
  17. Roose, M. L., and Gottlieb, L. D. (1976). Genetic and biochemical consequences of polyploidy inTragopogon.Evolution 30818.Google Scholar
  18. Scandalios, J. G., Sorenson, J. C., and Ott, L. A. (1975). Genetic control and intracellular localization of glutamate oxaloacetatic transaminase in maize.Biochem. Genet. 13759.Google Scholar
  19. Shull, G. H. (1929). Species hybridizations among old and new species of shepherd's purse.Proc. Int. Congr. Plant Sci. Collegiate Press, George Banta, Vol. 1, pp. 837–888.Google Scholar
  20. Stegemann, H. (1979).Gel-Elektrophorese und Fokussieren in Platten Biol. Bundesanstalt, Braunschweig.Google Scholar
  21. Weeden, N. F. (1983a). Evolution of plant isozymes. In Tanksley, S. D., and Orton, T. J. (eds.),Isozymes in Plant Genetics and Breeding, Part A Elsevier, Amsterdam, pp. 175–205.Google Scholar
  22. Weeden, N. F. (1983b). Plastid isozymes, In Tanksley, S. D., and Orton, T. J. (eds.),Isozymes in Plant Genetics and Breeding, Part A Elsevier, Amsterdam, pp. 139–156.Google Scholar
  23. Weeden, N. F., and Gottlieb, L. D. (1980). The genetics of chloroplast enzymes.J. Heredity 71392.Google Scholar
  24. Yang, S. Y. (1971). An appendix: Studies in genetics VI.Univ. Texas Publ. 710385.Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • Herbert Hurka
    • 1
  • Stephanie Freundner
    • 1
  • Anthony H. D. Brown
    • 2
  • Ursula Plantholt
    • 1
  1. 1.Institute of Biology, Spezielle BotanikUniversität OsnabrückOsnabrückF.R.G.
  2. 2.Division of Plant IndustryCSIROCanberra, ACTAustralia

Personalised recommendations