The moon

, Volume 8, Issue 1–2, pp 73–103 | Cite as

Bombardment as a cause of the lunar asymmetry

  • John A. Wood


A comparison of the lunar frontside gravity field with topography indicates that low-density (∼ 2.9 g cm−3) types of rock form a surface layer or crust of variable thickness: 40-60 km beneath terrae; 20-40 km beneath non-mascon maria; 0-20 km beneath mascon maria. The observed offset between lunar centers of mass and figure is consistent with farside crustal thicknesses of 40-50 km, similar to frontside terra thicknesses.

The Moon is asymmetric in crustal thickness, and also in the distribution of maria and gamma radioactivity. Early bombardment of the Moon by planetesimals, in both heliocentric and geocentric orbits, is examined as a possible cause of the asymmetries. The presence of a massive companion (Earth) causes a spin-orbit coupled Moon to be bombarded non-uniformly. The most pronounced local concentration of impacts would have occurred on the west limb of the Moon, when it orbited close to the Earth, if low-eccentricity heliocentric planetesimals were still abundant in the solar system at that time.

A very intense bombardment of this type could have redistributed crustal material on the Moon, thinning the west limb crust appreciably. This would have caused a change in position of the principal axes of inertia, and a reorientation of the spin-orbit coupled Moon such that the thinnest portion of its crust turned toward one of the poles. Erupting lavas would have preferentially flooded such a thin-crusted, low-lying area. This would have caused another readjustment of principal moments, and a reorientation of the Moon such that the mare areas tipped toward the equator. The north-south and nearside-farside asymmetries of mare distribution on the present Moon can be understood in terms of such a history.


Surface Layer Solar System Principal Axis Gravity Field Variable Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Giuli, R. T.: 1968,Icarus,8, 301.ADSCrossRefGoogle Scholar
  2. Haines, E. L.: 1969, ‘Lunar Scientific Model’,JPL 900-278, 124 pp.Google Scholar
  3. Kaula, W.: 1970, ‘Gravity and the Lunar Interior’, paper presented at a conference on The Structure, Composition, and History of the Lunar Surface, Lunar Science Institute, Houston, Sept. 9-11.Google Scholar
  4. Kopal, Z.: 1972,The Moon 4, 28.ADSCrossRefGoogle Scholar
  5. Krall, A. M.: 1968,Icarus 8, 61.ADSCrossRefGoogle Scholar
  6. MacDonald, G. J. F.: 1964,Science 145, 881.ADSCrossRefGoogle Scholar
  7. Marvin, U. B., Wood, J. A., Taylor, G. J., Reid, J. B., Powell, B. N., Dickey, J. S., and Bower, J. F.: 1971,Proc. 2nd Lunar Sci. Conf. 1, 679–699,MIT Press. ADSGoogle Scholar
  8. Masursky, H.: 1968, ‘Preliminary Geologic Interpretations of Lunar Orbiter Photography’, 1969 NASA Authorization; Ninetienth Congress, Second Session on H. R. 15086, 664-691.Google Scholar
  9. Metzger, A. E., Trombka, J. I., Peterson, L. E., Reedy, R. C., and Arnold, J. R.: 1972,Science, in press.Google Scholar
  10. Mills, G. A.: 1968,Icarus 8, 90.ADSCrossRefGoogle Scholar
  11. Muller, P. M. and Sjogren, W. L.: 1968,Science 161, 680.ADSCrossRefGoogle Scholar
  12. Murase, T. and McBirney, A. R.: 1970,Science 167, 149.CrossRefGoogle Scholar
  13. O'Keefe, J. A.: 1968,Science 162, 1405.ADSCrossRefGoogle Scholar
  14. Öpik, E. J.: 1967,Irish Astron. J. 8, 38.ADSGoogle Scholar
  15. Öpik, E. J.: 1969,Ann. Rev. Astron. Astrophys. 7, 473.ADSCrossRefGoogle Scholar
  16. Ringwood, A. E.: 1966,Geochim. Cosmochim. Acta 30, 41.ADSCrossRefGoogle Scholar
  17. Roberson, F. I. and Kaula, W. M.: 1972, Apollo 15 laser altimeter, inApollo 15 Preliminary Science Report, NASA SP-289, 25-48, 25-50.Google Scholar
  18. Runcorn, S. K.: 1962,Nature 195, 1150.ADSCrossRefGoogle Scholar
  19. Smith, J. V., Anderson, S. T., Newton, R. C., Olsen, E. J., and Wyllie, P. J.: 1970,J. Geology 78, 381.ADSCrossRefGoogle Scholar
  20. Shoemaker, E. M., Hait, M. H., Swann, G. A., Schleicher, D. L., Schaber, G. G., Sutton, R. L., Dahlem, D. H., Goddard, E. N., and Waters, A. C.: 1970,Proc. Apollo 11 Lunar Sci. Conf. 3, 2399–2412.ADSGoogle Scholar
  21. Taylor, G. J., Marvin, U. B., Reid, J. B., and Wood, J. A.: 1972,Proc. 3rd Lunar Sci. Conf. 1, 995–1014, MIT Press.ADSGoogle Scholar
  22. Toksöz, M. N., Press, F., Anderson, K., Dainty, A., Latham, G., Ewing, M., Dorman, J., Lammlein, D., Sutton, G., Duennebier, F., and Nakamura, Y.: 1972,Science 176, 1012.ADSCrossRefGoogle Scholar
  23. Turski, W.: 1962,Icarus 1, 170.ADSCrossRefGoogle Scholar
  24. Vortman, L. J.: 1968,J. Geophys. Res. 73, 4621.ADSCrossRefGoogle Scholar
  25. Wiesel, W.: 1971,Icarus 15, 373.ADSCrossRefGoogle Scholar
  26. Wong, L., Buechler, G., Downs, W., Sjogren, W., Muller, P., and Gottlieb, P.: 1971,J. Geophys. Res. 76, 6220.ADSCrossRefGoogle Scholar
  27. Wood, J. A.: 1972,Icarus 16, 462.ADSCrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company 1973

Authors and Affiliations

  • John A. Wood
    • 1
  1. 1.Smithsonian Astrophysical ObservatoryCambridgeUSA

Personalised recommendations