Advertisement

The moon

, Volume 8, Issue 1–2, pp 33–57 | Cite as

The moon as a high temperature condensate

  • Don L. Anderson
Article

Abstract

The accretion during condensation mechanism, if it occurs during the early over-luminous stage of the Sun, can explain the differences in composition of the terrestrial planets and the Moon. An important factor is the variation of pressure and temperature with distance from the Sun, and in the case of the Moon and captured satellites of other planets, with distance from the median plane. Current estimates of the temperature and pressure in the solar nebula suggest that condensation will not be complete in the vicinity of the terrestrial planets, and that depending on location, iron, magnesium silicates and the volatiles will be at least partially held in the gaseous phase and subject to separation from the dust by solar wind and magnetic effects associated with the transfer of angular momentum just before the Sun joins the Main Sequence.

Many of the properties of the Moon, including the ‘enrichment’ in Ca, Al, Ti, U, Th, Ba, Sr and the REE and the ‘depletion’ in Fe, Rb, K, Na and other volatiles can be understood if the Moon represents a high temperature condensate from the solar nebula. Thermodynamic calculations show that Ca, Al and Ti rich compounds condense first in a cooling nebula. The high temperature mineralogy is gehlenite, spinel, perovskite, Ca-Al-rich pyroxenes and anorthite. The model is consistent with extensive early melting, shallow melting at 3 AE and with presently high deep internal temperatures. It is predicted that the outer 250 km is rich in plagioclase and FeO. The low iron content of the interior in this model raises the interior temperatures estimated from electrical conductivity by some 800°C. The lunar crust is 80% gabbroic anorthosite, 20% basalt and is about 250-270 km thick. The lunar mantle is probably composed of spinel, merwinite and diopside with a density of 3.4 g cm−3.

Keywords

Solar Wind Perovskite Diopside Main Sequence Terrestrial Planet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, D. L.: 1972a,Earth Planetary Sci. Letters, in press.Google Scholar
  2. Anderson, D. L.: 1972b,Science, in press.Google Scholar
  3. Anderson, D. L.: 1972c,Nature 239, 263.ADSCrossRefGoogle Scholar
  4. Anderson, D. L.: 1972d,J. Geophys. Res., in press.Google Scholar
  5. Anderson, D. L. and Kovach, R. L.: 1972,Phys. Earth Planetary Interiors, in press.Google Scholar
  6. Blander, M. and Katz, J.: 1967,Geochim. Cosmochim. Acta 31, 1025.ADSCrossRefGoogle Scholar
  7. Cameron, A. G. W.: 1973,The Moon 7, 377.ADSCrossRefGoogle Scholar
  8. Clark, S. P., Turekain, K. K., and Grossman, L.: 1972, in E. C. Robertson (ed.),The Nature of the Solid Earth, McGraw-Hill, 3-18.Google Scholar
  9. Clarke, R., Jarosewich, E., Mason, B., Nelen, J., Gomez, M., and Hyde, J. R.: 1970,Smithsonian Contrib. Earth Sci. 5.Google Scholar
  10. Ganapathy, R., Keays, R., Laul, J. C., and Anders, E.: 1970,Geochim. Cosmochim. Acta, Suppl. 1, 1117.ADSGoogle Scholar
  11. Gast, P. W.: 1972,The Moon 5, 121–128.ADSCrossRefGoogle Scholar
  12. Gast, P., Hubbard, N., and Weismann, H.: 1970,Geochim. Cosmochim. Acta, Suppl. 1, 1143.ADSGoogle Scholar
  13. Green, T.: 1970,Phys. Earth Planetary Interiors 3, 441.ADSCrossRefGoogle Scholar
  14. Grossman, L.: 1972,Condensation, Chondrites and Planets, Ph.D. Thesis, Yale University, 97 pp.Google Scholar
  15. Hanks, T. and Anderson, D. L.,Earth Planetary Interiors, in press.Google Scholar
  16. Hays, J.: 1966,Carnegie Institution of Washington Year Book 65, 234.Google Scholar
  17. Hoyle, F. and Wickramasinghe, N.: 1968,Nature 217, 415.ADSCrossRefGoogle Scholar
  18. Hubbard, N., Meyer, C., and Gast, P.: 1973Earth Planetary Interiors, in press.Google Scholar
  19. Hubbard, N., Gast, P., Meyer, C., Nyquist, L., Shih, C., and Weismann, H.: 1971,Earth Planetary Sci. Letters 13, 71.ADSCrossRefGoogle Scholar
  20. Ito, K. and Kennedy, G.: 1971, in J. Heacock (ed.), ‘The Structure and Physical Properties of the Earth's Crust’,Am. Geophys. U., Geophys. Mono. 14, 303.Google Scholar
  21. Kushiro, I.: 1964,Carnegie Institution of Washington Year Book 63, 84.Google Scholar
  22. Larimer, J.: 1967,Geochim. Cosmochim. Acta 31, 1215.ADSCrossRefGoogle Scholar
  23. Laul, J., Morgan, J., Ganapathy, R., and Anders, E.: 1971,Proc. 2nd Lunar Sci. Conf. 2, 1159.ADSGoogle Scholar
  24. Lord III, H. C.: 1965,Icarus 4, 279.ADSCrossRefGoogle Scholar
  25. MacGregor, I.: 1970,Phys. Earth Planetary Interiors 3, 372.ADSCrossRefGoogle Scholar
  26. Marvin, U., Wood, J., and Dickey, J.: 1970,Earth Planetary Sci. Letters 7, 346.ADSCrossRefGoogle Scholar
  27. Mason, B. and Melson, W.: 1970,The Lunar Rocks, Wiley-Interscience, 179 pp.Google Scholar
  28. Onuma, N., Clayton, R., and Mayeda, T.: 1972,Geochim. Cosmochim. Acta 36, 169–188.ADSCrossRefGoogle Scholar
  29. Prince, A.: 1954,Am. Ceramic Soc. J. 37, 402.CrossRefGoogle Scholar
  30. Ringwood, A. E. and Essene, E.: 1970,Science 167, 607.ADSCrossRefGoogle Scholar
  31. Sonett, G., Shubert, G., Smith, B., Schwartz, K., and Colburn, D.: 1971,Proc. Apollo 12 Lunar Sci. Conf., MIT Press.Google Scholar
  32. Wakita, H. and Schmitt, R.: 1970a,Nature 227, 478.ADSCrossRefGoogle Scholar
  33. Wakita, H. and Schmitt, R.: 1970b,Science 170, 969.ADSCrossRefGoogle Scholar
  34. Wood, J., Dickey, J., Marvin, U., and Powell, B.: 1970,Proc. Apollo 11 Lunar Sci. Conf. 1, 965.ADSGoogle Scholar

Copyright information

© D. Reidel Publishing Company 1973

Authors and Affiliations

  • Don L. Anderson
    • 1
  1. 1.Seismological Laboratory, Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations