Russian Physics Journal

, Volume 36, Issue 8, pp 796–800 | Cite as

Calculation of angular distribution of multiply scattered ions

  • V. G. Abdrashitov
  • V. V. Ryzhov
  • V. V. Starodumov
Elementary Particle Physics and Field Theory


A SCAT program is developed for calculation of the angular distribution of multiply scattered ions in the case of various interaction potentials. The accuracy attained is higher than that obtained with the well-known Meyer and Sigmund programs. The influence of the interaction potential on the angular distribution of multiply scattered ions is analyzed. A good agreement between the angular distribution calculated by the SCAT program and the experimental data and the results of simulation by the Monte Carlo method is observed.


Experimental Data Monte Carlo Method Angular Distribution Interaction Potential Scat Program 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. G. Bannenberg and F. W. Saris,Nucl. Instrum. Methods,B37/38, 398–402 (1989).Google Scholar
  2. 2.
    J. P. Biersack and L. G. Haggmark,Nucl. Instrum. Methods,174, 257–269 (1980).Google Scholar
  3. 3.
    J. F. Ziegler,Nucl. Instrum. Methods,B6, 270–282 (1985).Google Scholar
  4. 4.
    V. S. Remizovich, D. B. Rogozkin, and M. I. Ryazanov,Range Straggling of Charged Particles [in Russian], Energoatomizdat, Moscow (1988).Google Scholar
  5. 5.
    W. Bothe,Z. Phys.,5, 63 (1921).Google Scholar
  6. 6.
    P. Sigmund and K. B. Winterbon,Nucl. Instrum. Methods,119, 541–557 (1974).Google Scholar
  7. 7.
    L. Meyer,Phys. Stat. Solidi B44, 253–268 (1971).Google Scholar
  8. 8.
    J. Lindhard, V. Nelsen, and M. Scharff,Mat. Fys. Medd. Dan. Vid. Selk,36, No. 10 (1968).Google Scholar
  9. 9.
    M. T. Robinson, Oak Ridge 1970/Report ORNL-4556.Google Scholar
  10. 10.
    K. B. Winterbon, P. Sigmund, and J. B. Sanders,Mat. Fys. Medd. Dan. Vid. Selk,37, No. 10 (1970).Google Scholar
  11. 11.
    M. A. Chubisov, Preprint No. 81-15, Institute of High-Energy Physics, Academy of Sciences of Kazakh SSR, Alma Ata (1981).Google Scholar
  12. 12.
    Foreside,Numerical Methods [Russian translation], Mir, Moscow (1980).Google Scholar
  13. 13.
    V. G. Abdrashitov, V. V. Ryzhov, and V. V. Starodumov, Preprint No. 2, Tomsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Tomsk (1993).Google Scholar
  14. 14.
    J. F. Ziegler, J. P. Biersack, and U. Littmark, in: Proc. Int. Ion. Engineering Congress, Kyoto (1983), pp. 1861–1873.Google Scholar
  15. 15.
    D. S. Semyonov,Poverkhnost', No. 6, 41–44 (1987).Google Scholar
  16. 16.
    W. Moller, G. Pospiech, and G. Schrieder,Nucl. Instrum. Methods,130, 265–270 (1975).Google Scholar
  17. 17.
    V. G. Abdrashitov and V. V. Ryzhov, Preprint No. 14, Tomsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Tomsk (1992).Google Scholar
  18. 18.
    M. A. Kumakov and F. F. Komarov,Energy Losses and Ranges of Ions in Solids [in Russian], Izd. BGU, Minsk (1979).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • V. G. Abdrashitov
    • 1
  • V. V. Ryzhov
    • 1
  • V. V. Starodumov
    • 1
  1. 1.Institute of High-Current Electronics, Siberian BranchRussian Academy of SciencesRussia

Personalised recommendations